HDU 4911 - Inversion(树状数组||归并排序)

本文介绍了一种通过归并排序或树状数组求解给定序列经相邻元素交换后的最小逆序数对的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Inversion

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)
Total Submission(s): 5250    Accepted Submission(s): 1845


Problem Description
bobo has a sequence a 1,a 2,…,a n. He is allowed to swap two  adjacent numbers for no more than k times.

Find the minimum number of inversions after his swaps.

Note: The number of inversions is the number of pair (i,j) where 1≤i<j≤n and a i>a j.
 

Input
The input consists of several tests. For each tests:

The first line contains 2 integers n,k (1≤n≤10 5,0≤k≤10 9). The second line contains n integers a 1,a 2,…,a n (0≤a i≤10 9).
 

Output
For each tests:

A single integer denotes the minimum number of inversions.
 

Sample Input
  
3 1 2 2 1 3 0 2 2 1
 

Sample Output
  
1 2
 

Author
Xiaoxu Guo (ftiasch)
 

Source
 


题意:
给你一个排序,你可以交换k次相邻的数,输出最好方案的最少的逆序数对。

POINT:
容易可知,每次交换都可以减少一个逆序数对。
所以只要求出原始的逆序数对,减去k,再与0比较一下就好了。


求逆序数对
1:因为数比较大,但是个数才1e5,用离散化后树状数组。
2:归并排序。

【训练赛的时候,写树状数组写错TLE,写线段树数组开小了,错了8发,真要反省一下。那么简单的题】

归并:
#include <string>
#include <string.h>
#include <iostream>
#include <queue>
#include <math.h>
#include <stdio.h>
using namespace std;
#define LL long long
const LL maxn = 1e5+55;
LL a[maxn];
LL ans=0;
void merge(LL l,LL mid,LL r)
{
	LL now=0;
	LL ll=l;
	LL rr=mid+1;
	LL cnt[maxn];
	while(ll<=mid&&rr<=r){
		if(a[ll]<=a[rr]){
			cnt[++now]=a[ll++];
		}else{
			cnt[++now]=a[rr++];
			ans+=mid-ll+1;
		}
	}
	while(ll<=mid){
		cnt[++now]=a[ll++];
	}
	while(rr<=r){
		cnt[++now]=a[rr++];
	}
	for(LL i=1;i<=now;i++){
		a[l+i-1]=cnt[i];
	}
	
}
void bf(LL l,LL r)
{
	if(l==r) return;
	LL mid=(l+r)>>1;
	bf(l,mid);
	bf(mid+1,r);
	merge(l,mid,r);
}
int main()
{
	LL n,k;
	while(~scanf("%lld %lld",&n,&k)){
		ans=0;
		for(LL i=1;i<=n;i++) scanf("%lld",&a[i]);
		bf(1,n);
		printf("%lld\n",max(ans-k,1LL*0));
	}
    return 0;
}


树状数组:

#include<iostream>
#include<iomanip>
#include <cstdio>
#include <string.h>
#include <algorithm>
#include <stack>
#include <cmath>
using namespace std;
typedef long long LL;
const LL maxn = 2*1e5+33;
LL a[maxn];
LL now[maxn];
LL sum[maxn];
LL n,k;
LL cnt=0;
LL lowbit(LL x)
{
    return x&-x;
}
void add(LL x,LL p)
{
    for(LL i=x;i<=cnt;i+=lowbit(i)){
        sum[i]++;
    }
}
LL query(LL x)
{
    LL ans=0;
    for(LL i=x;i>=1;i-=lowbit(i)){
        ans+=sum[i];
    }
    return ans;
}
int main()
{
    while(~scanf("%lld %lld",&n,&k)){
        cnt=0;
        for(LL i=1;i<=n;i++){
            sum[i]=0;
            scanf("%lld",&a[i]);
            now[i]=a[i];
        }
        sort(now+1,now+1+n);
        now[0]=-111;
        for(LL i=1;i<=n;i++){
            if(now[i]==now[i-1]) continue;
            now[++cnt]=now[i];
        }
        LL ans=0;
        for(LL i=1;i<=n;i++){
            a[i]=(LL)(lower_bound(now+1,now+1+cnt,a[i])-now);
            add(a[i],1);
            ans+=query(cnt)-query(a[i]);
        }
        ans=max(1LL*0,ans-k);
        printf("%lld\n",ans);

    }

    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值