给nnn个数和一个上下限LLL和RRR,每次可以将一段连续的kkk个数合并,代价为数值之和,且要满足k∈[L,R]k\in[L,R]k∈[L,R]。求最终合并为1堆的最小代价。
与合并石子类似,定义dp[i][j][k]dp[i][j][k]dp[i][j][k]为区间[i,j][i,j][i,j]剩下kkk堆的最小代价,因为只有l≤k≤rl\leq k \leq rl≤k≤r才能合并,所以将k=1k=1k=1单独转移:
dp[i][j][k]=min{dp[i][p][1]+dp[p+1][j][k−1]} k≥2dp[i][j][1]=min{dp[i][j][k]+s[i]−s[j−1]} l≤k≤r\begin{aligned}
&dp[i][j][k] = \min\{ dp[i][p][1] + dp[p + 1][j][k - 1]\} & \ \ \ \ \ \ k\geq2\\
& dp[i][j][1] =\min\{ dp[i][j][k] + s[i]-s[j-1]\} & \ \ \ \ \ \ l\leq k \leq r\\
\end{aligned}dp[i][j][k]=min{dp[i][p][1]+dp[p+1][j][k−1]}dp[i][j][1]=min{dp[i][j][k]+s[i]−s[j−1]} k≥2 l≤k≤r
#include<cstdio>
#include<cstring>
#include<cmath>
#include<iostream>
#include<algorithm>
#include<vector>
#include<queue>
#include<map>
#include<set>
#include<stack>
#include<cstdlib>
#define inf 0x3f3f3f3f
#define ll long long
#define mem(a, x) memset(a,x,sizeof(a))
typedef std::pair<ll, ll> Pll;
const int N = 110;
using namespace std;
ll gcd(ll p, ll q) { return q == 0 ? p : gcd(q, p % q); }
ll dp[N][N][N], a[N], s[N];
int n, l, r;
inline void init() {
for (int i = 1; i <= n; i++) cin >> a[i], s[i] = s[i - 1] + a[i];
mem(dp, inf);
}
int main() {
ios::sync_with_stdio(false);
cin.tie(0);
cout.tie(0);
while (cin >> n >> l >> r) {
init();
for (int d = 1; d <= n; d++)
for (int i = 1, j; j = i + d - 1, j <= n; i++) {
dp[i][j][d] = 0;
for (int k = 2; k <= d; k++) {
for (int p = i; p <= j; p++)
dp[i][j][k] = min(dp[i][j][k], dp[i][p][1] + dp[p + 1][j][k - 1]);
if (l <= k && k <= r)
dp[i][j][1] = min(dp[i][j][1], dp[i][j][k] + s[j] - s[i - 1]);
}
}
printf("%lld\n", dp[1][n][1] >= inf ? 0 : dp[1][n][1]);
}
return 0;
}