Divide Two Integers
问题描述
Divide two integers without using multiplication, division and mod operator.
If it is overflow, return MAX_INT.
分析
题目要求不能使用乘除取余,如果单单依靠减法操作,也是一种解决思路,但并不是高效的,所以使用移位运算符。
解答
class Solution {
public:
int divide(int dividend, int divisor) {
if (!divisor || (dividend == INT_MIN && divisor == -1))
return INT_MAX;
int flag = 1;
long long dvd = dividend;
long long dvs = divisor;
if (dividend < 0)
{
flag = -flag;
dvd = -dvd;
}
if (divisor < 0)
{
flag = -flag;
dvs = -dvs;
}
int result = 0;
while (dvd >= dvs)
{
long long temp = dvs;
int multiple = 1;
while (dvd >= (temp << 1))
{
temp <<= 1;
multiple <<= 1;
}
dvd -= temp;
result += multiple;
}
return flag == 1 ? result : -result;
}
};
Search in Rotated Sorted Array
问题描述
Suppose an array sorted in ascending order is rotated at some pivot unknown to you beforehand.
(i.e., 0 1 2 4 5 6 7 might become 4 5 6 7 0 1 2).
You are given a target value to search. If found in the array return its index, otherwise return -1.
You may assume no duplicate exists in the array.
分析
考察的是二分查找,由于数组的顺序有变化,需要在改变边界值时做出调整。
解答
class Solution {
public:
int search(vector<int>& nums, int target) {
int front = 0;
int back = nums.size();
while (front < back)
{
int mid = front + (back - front) / 2;
if (nums[mid] == target)
return mid;
if(nums[front] <= nums[mid])
if (nums[front] <= target && nums[mid] > target)
back = mid;
else
front = mid + 1;
else
if (nums[back - 1] >= target && nums[mid] < target)
front = mid + 1;
else
back = mid;
}
return -1;
}
};
Search for a Range
问题描述
Given an array of integers sorted in ascending order, find the starting and ending position of a given target value.
Your algorithm’s runtime complexity must be in the order of O(log n).
If the target is not found in the array, return [-1, -1].
For example,
Given [5, 7, 7, 8, 8, 10] and target value 8,
return [3, 4].
分析
同样使用二分查找,由于要确定的是查找值的范围,使用两次二分查找确定它的区域。
解答
class Solution {
public:
vector<int> searchRange(vector<int>& nums, int target) {
vector<int> result(2, -1);
if (nums.empty())
return result;
int front = 0;
int back = nums.size() - 1;
while (front < back)
{
int mid = (front + back) / 2;
if (nums[mid] < target)
front = mid + 1;
else
back = mid;
}
if (nums[front] != target)
return result;
else
result[0] = front;
back = nums.size() - 1;
while (front < back)
{
int mid = (front + back) /2 + 1;
if (nums[mid] > target)
back = mid - 1;
else
front = mid;
}
result[1] = front;
return result;
}
};