CF 725F 贪心

F. Family Photos
time limit per test2 seconds
memory limit per test256 megabytes
inputstandard input
outputstandard output
Alice and Bonnie are sisters, but they don’t like each other very much. So when some old family photos were found in the attic, they started to argue about who should receive which photos. In the end, they decided that they would take turns picking photos. Alice goes first.

There are n stacks of photos. Each stack contains exactly two photos. In each turn, a player may take only a photo from the top of one of the stacks.

Each photo is described by two non-negative integers a and b, indicating that it is worth a units of happiness to Alice and b units of happiness to Bonnie. Values of a and b might differ for different photos.

It’s allowed to pass instead of taking a photo. The game ends when all photos are taken or both players pass consecutively.

The players don’t act to maximize their own happiness. Instead, each player acts to maximize the amount by which her happiness exceeds her sister’s. Assuming both players play optimal, find the difference between Alice’s and Bonnie’s happiness. That is, if there’s a perfectly-played game such that Alice has x happiness and Bonnie has y happiness at the end, you should print x - y.

Input
The first line of input contains a single integer n (1 ≤ n ≤ 100 000) — the number of two-photo stacks. Then follow n lines, each describing one of the stacks. A stack is described by four space-separated non-negative integers a1, b1, a2 and b2, each not exceeding 109. a1 and b1 describe the top photo in the stack, while a2 and b2 describe the bottom photo in the stack.

Output
Output a single integer: the difference between Alice’s and Bonnie’s happiness if both play optimally.

Examples
input
2
12 3 4 7
1 15 9 1
output
1
input
2
5 4 8 8
4 12 14 0
output
4
input
1
0 10 0 10
output
-10

题意:给了n个四元组x,y,xx,yy,A和B参与博弈。两人轮流选择,拿掉第i个的第一层或者在第一层拿掉的情况下拿第二层,A拿获利x(xx),B拿同理,可以选择pass。在拿完或两人连续pass时结束。

做法:xjb贪。
首先,若x<=yyy<=xx该堆显然后手得利,相当于没用,pass。
其次,若不满足上一种条件,但是x+y<xx+yy,则先手会相对“吃亏“,但是因为不满足上一条,必然存在x>yyy>xx两者之一,就是说必然有一方有“净利润”,有净利润者即使相对“吃亏”也会先取第一层,所以ans+=xyy(xxy)
最后,其余情况,一堆的价值等于x+y的和,维护一个大顶堆,按价值从高到低取,取到第一层后把第二层置入堆,依次操作即可。
比赛的时候想到是贪心,但没考虑周全,wa了,赛后感觉确实没有什么大的trick。

代码:

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;

int n;
struct node{
    int x, y, xx, yy;
    int tag;
};

bool operator<(const node& a, const node& b){
    return a.x+a.y<b.x+b.y;
}

int main()
{
    priority_queue<node> pq;
    ll ans=0;
    scanf("%d", &n);
    int x, y, xx, yy;
    for(int i=1;i<=n;i++){
        scanf("%d%d%d%d", &x, &y, &xx, &yy);
        if(x<=yy&&y<=xx)continue;
        else if(x+y<xx+yy){
            if(x>yy)ans+=x-yy;
            else ans+=xx-y;
        }
        else{
            node tmp;
            tmp.x=x, tmp.y=y, tmp.xx=xx, tmp.yy=yy;
            tmp.tag=1;
            pq.push(tmp);
        }
    }
    int cnt=0;
    while(!pq.empty()){
        cnt++;
        node tmp=pq.top();
        pq.pop();
        //printf("%d %d\n", tmp.x, tmp.y);
        if(cnt%2){
            ans+=tmp.x;
        }
        else ans-=tmp.y;
        if(tmp.tag==1){
            tmp.tag=2;
            tmp.x=tmp.xx;
            tmp.y=tmp.yy;
            tmp.xx=0;
            tmp.yy=0;
            pq.push(tmp);
        }
    }
    printf("%lld\n", ans);
}
考虑柔性负荷的综合能源系统低碳经济优化调度【考虑碳交易机制】(Matlab代码实现)内容概要:本文围绕“考虑柔性负荷的综合能源系统低碳经济优化调度”展开,重点研究在碳交易机制下如何实现综合能源系统的低碳化与经济性协同优化。通过构建包含风电、光伏、储能、柔性负荷等多种能源形式的系统模型,结合碳交易成本与能源调度成本,提出优化调度策略,以降低碳排放并提升系统运行经济性。文中采用Matlab进行仿真代码实现,验证了所提模型在平衡能源供需、平抑可再生能源波动、引导柔性负荷参与调度等方面的有效性,为低碳能源系统的设计与运行提供了技术支撑。; 适合人群:具备一定电力系统、能源系统背景,熟悉Matlab编程,从事能源优化、低碳调度、综合能源系统等相关领域研究的研究生、科研人员及工程技术人员。; 使用场景及目标:①研究碳交易机制对综合能源系统调度决策的影响;②实现柔性负荷在削峰填谷、促进可再生能源消纳中的作用;③掌握基于Matlab的能源系统建模与优化求解方法;④为实际综合能源项目提供低碳经济调度方案参考。; 阅读建议:建议读者结合Matlab代码深入理解模型构建与求解过程,重点关注目标函数设计、约束条件设置及碳交易成本的量化方式,可进一步扩展至多能互补、需求响应等场景进行二次开发与仿真验证。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值