1099. Build A Binary Search Tree (30)
A Binary Search Tree (BST) is recursively defined as a binary tree which has the following properties:
The left subtree of a node contains only nodes with keys less than the node’s key.
The right subtree of a node contains only nodes with keys greater than or equal to the node’s key.
Both the left and right subtrees must also be binary search trees.
Given the structure of a binary tree and a sequence of distinct integer keys, there is only one way to fill these keys into the tree so that the resulting tree satisfies the definition of a BST. You are supposed to output the level order traversal sequence of that tree. The sample is illustrated by Figure 1 and 2.
Input Specification:
Each input file contains one test case. For each case, the first line gives a positive integer N (<=100) which is the total number of nodes in the tree. The next N lines each contains the left and the right children of a node in the format “left_index right_index”, provided that the nodes are numbered from 0 to N-1, and 0 is always the root. If one child is missing, then -1 will represent the NULL child pointer. Finally N distinct integer keys are given in the last line.
Output Specification:
For each test case, print in one line the level order traversal sequence of that tree. All the numbers must be separated by a space, with no extra space at the end of the line.
Sample Input:
9
1 6
2 3
-1 -1
-1 4
5 -1
-1 -1
7 -1
-1 8
-1 -1
73 45 11 58 82 25 67 38 42
Sample Output:
58 25 82 11 38 67 45 73 42
/*************************************************************
Author : qmeng
MailTo : qmeng1128@163.com
QQ : 1163306125
Blog : http://blog.youkuaiyun.com/Mq_Go/
Create : 2018-03-04 16:26:42
Version: 1.0
**************************************************************/
#include <cstdio>
#include <iostream>
#include <algorithm>
#include <cstdlib>
#include <vector>
#include <queue>
using namespace std;
struct Tree{
Tree *le;
Tree *ri;
int data;
};
struct Post{
int a;
int b;
};
vector<Post> v;
queue<Tree *> q;
int n;
int pos[105];
int index = 0;
bool key = true;
Tree *Tr = NULL;
Tree* buildTree(Tree *root,int k){
root = new Tree;
root->data = k;
root->le = root->ri = NULL;
if(v[k].a != -1){
root->le = buildTree(root->le,v[k].a);
}
if(v[k].b != -1){
root->ri = buildTree(root->ri,v[k].b);
}
return root;
}
void inOrder(Tree *root){
if(root == NULL)return;
inOrder(root->le);
root->data = pos[index++];
inOrder(root->ri);
}
void printLevelOrder(){
while(!q.empty()){
Tree *root = q.front();
if(key == true){
printf("%d",root->data);
key = false;
}else printf(" %d",root->data);
q.pop();
if(root->le!= NULL)q.push(root->le);
if(root->ri!= NULL)q.push(root->ri);
}
}
int main(){
scanf("%d",&n);
Post x;
for(int i = 0 ; i < n ; i++){
scanf("%d %d",&x.a,&x.b);
v.push_back(x);
}
for(int i = 0 ; i < n ; i++){
scanf("%d",&pos[i]);
}
sort(pos,pos+n);
Tr = buildTree(Tr,0);
q.push(Tr);
inOrder(Tr);
printLevelOrder();
}