#include <opencv2/imgcodecs.hpp>
#include <opencv2/highgui.hpp>
#include <opencv2/imgproc.hpp>
#include <iostream>
using namespace std;
using namespace cv;
static void help(char* progName)
{
cout << endl
<< "This program shows how to filter images with mask: the write it yourself and the"
<< "filter2d way. " << endl
<< "Usage:" << endl
<< progName << " [image_path -- default ../data/lena.jpg] [G -- grayscale] " << endl << endl;
}
void Sharpen(const Mat& myImage, Mat& Result);
int main(int argc, char* argv[])
{
help(argv[0]);
const char* filename = argc >= 2 ? argv[1] : "../data/lena.jpg"; //如果没有输入图片就从默认位置读取
Mat src, dst0, dst1;
if (argc >= 3 && !strcmp("G", argv[2])) //根据是否有G来改变imread函数参数
src = imread(filename, IMREAD_GRAYSCALE);
else
src = imread(filename, IMREAD_COLOR);
if (src.empty()) //是否成功读入图片
{
cerr << "Can't open image [" << filename << "]" << endl;
return -1;
}
namedWindow("Input", WINDOW_AUTOSIZE); //开两个窗口
namedWindow("Output", WINDOW_AUTOSIZE);
imshow("Input", src); //展示输入
double t = (double)getTickCount();
Sharpen(src, dst0); //调用手写函数
t = ((double)getTickCount() - t) / getTickFrequency();
cout << "Hand written function time passed in seconds: " << t << endl;
imshow("Output", dst0); //展示输出
waitKey();
//![kern]
Mat kernel = (Mat_<char>(3, 3) << 0, -1, 0, //表示掩码的Mat类
-1, 5, -1,
0, -1, 0);
//![kern]
t = (double)getTickCount();
//![filter2D]
filter2D(src, dst1, src.depth(), kernel); //调用filter2D函数
//![filter2D]
t = ((double)getTickCount() - t) / getTickFrequency();
cout << "Built-in filter2D time passed in seconds: " << t << endl;
imshow("Output", dst1); //展示输出
waitKey();
return 0;
}
//! [basic_method]
void Sharpen(const Mat& myImage, Mat& Result)
{
//! [8_bit]
CV_Assert(myImage.depth() == CV_8U); // accept only uchar images
//! [8_bit]
//! [create_channels]
const int nChannels = myImage.channels();
Result.create(myImage.size(), myImage.type());
//! [create_channels]
//! [basic_method_loop]
for (int j = 1; j < myImage.rows - 1; ++j)
{
const uchar* previous = myImage.ptr<uchar>(j - 1); //记录上下行地址
const uchar* current = myImage.ptr<uchar>(j);
const uchar* next = myImage.ptr<uchar>(j + 1);
uchar* output = Result.ptr<uchar>(j);
for (int i = nChannels; i < nChannels*(myImage.cols - 1); ++i)
{
*output++ = saturate_cast<uchar>(5 * current[i] //根据公式
- current[i - nChannels] - current[i + nChannels] - previous[i] - next[i]);
}
}
//! [basic_method_loop]
//! [borders] //边界变成0
Result.row(0).setTo(Scalar(0));
Result.row(Result.rows - 1).setTo(Scalar(0));
Result.col(0).setTo(Scalar(0));
Result.col(Result.cols - 1).setTo(Scalar(0));
//! [borders]
}
//! [basic_method]
这个算法是不是就是为了模糊呢?感觉和上一个很相似嘛
本文介绍了一种使用自定义函数和OpenCV的filter2D函数进行图像锐化的实现方法。通过对比两种方法的时间消耗,展示了如何在C++中利用OpenCV库进行图像处理,并提供了完整的源代码示例。
1209

被折叠的 条评论
为什么被折叠?



