java.sql.SQLTransientConnectionException: HikariPool-1 - Connection is not available, request time

解决HikariCP连接超时问题

💡 亲爱的技术伙伴们:

你是否正在为这些问题焦虑——

✅ 简历投出去杳无音信,明明技术不差却总卡在面试?

✅ 每次终面都紧张不已,不知道面试官到底想要什么答案?

✅ 技术知识点零零散散,遇到系统设计题就头脑一片空白?


🎯 Java高级开发岗面试急救包》—— 专为突破面试瓶颈而生

这不是普通的面试题汇总,而是凝聚多年面试官经验的实战赋能体系。我不仅告诉你答案,更帮你建立面试官的思维模式。

🔗 课程链接https://edu.youkuaiyun.com/course/detail/40731


🎯 精准人群定位

  • 📖 应届生/在校生——缺乏项目经验?我帮你用技术深度弥补经验不足
  • 🔄 初级/中级开发者——技术栈单一?带你突破技术瓶颈,实现薪资跃迁
  • 🚀 高级开发者——面临架构设计难题?深入剖析真实的大型互联网项目场景
  • 非科班转行——基础不扎实?建立完整知识体系,面试更有底气

🔥 《Java高级开发岗面试急救包》(完整技术体系)

🚀 高并发深度实战

  • 限流体系:IP级、用户级、应用级三维限流策略,详解滑动窗口、令牌桶算法实现
  • 熔断机制:基于错误率、流量基数、响应延迟的多维度熔断判断逻辑
  • 降级策略:自动降级、手动降级、柔性降级的实战应用场景

高性能架构全解析

  • 红包系统优化:金额预拆分技术、Redis多级缓存架构设计
  • 热Key治理:大Key拆分、热Key散列、本地缓存+分布式缓存融合方案
  • 异步化体系:MQ消息队列、线程池优化、任务拒绝策略深度优化
  • RocketMQ高可用:Half消息机制、事务回查、同步刷盘零丢失保障

🌊 海量数据处理实战

  • 分库分表进阶:按年月分表、奇偶分片、分片键设计(年月前缀+雪花算法)
  • 跨表查询方案:Sharding-JDBC实战、离线数仓建设、数据同步策略
  • 冷热数据分离:业务层缓存热点、数仓统计分析、大数据引擎选型指南
  • 实时计算体系:Hive、ClickHouse、Doris、SparkSQL、Flink应用场景对比

🛠️ 服务器深度调优

  • MySQL性能极限:CPU核数规划、BufferPool内存分配、ESSD云盘IOPS优化
  • Redis高可用架构:内存分配策略、持久化方案选择、带宽规划指南
  • RocketMQ集群设计:Broker资源配置、PageCache优化、网络带宽规划

🔒 系统安全全链路

  • 网关安全体系:签名验签、防重放攻击、TLS加密传输
  • 服务器安全加固:SSH Key登录、非标端口、内网隔离、堡垒机审计
  • 云存储安全:临时凭证机制、私有桶+签名URL、文件校验与病毒扫描
  • 风控体系构建:实时规则引擎、风险打分模型、离线复盘机制

🔄 数据一致性终极方案

  • 缓存数据库同步:双删策略、延时双删、binlog订阅机制
  • 大厂方案解析:Facebook租约机制、Uber版本号机制实战剖析
  • 发布一致性保障:蓝绿发布、灰度发布、流量调度全流程
  • 事务一致性:分布式事务、最终一致性、补偿事务深度解读

👥 项目与团队管理进阶

  • 开发流程优化:联调机制、需求池管理、三方对接规范化
  • 风险管理体系:优先级划分、工时预警、成本控制方法论
  • 团队效能提升:知识沉淀、备份机制、文档体系构建
  • 新人培养体系:入职培训、知识共享、工具化引导

🏗️ 系统稳定性建设

  • 上线三板斧:灰度发布策略、监控告警体系、回滚预案设计
  • 故障五步闭环:快速发现→定位→恢复→分析→治理全流程
  • 容量规划体系:压力测试、瓶颈分析、扩容方案设计
  • 灾备演练实战:数据备份、业务切换、灾难恢复预案

🚀 立即行动,改变从现在开始!

🔗 课程链接https://edu.youkuaiyun.com/course/detail/40731

不要再让面试成为你职业发展的绊脚石!用7天时间系统准备,轻松应对各种技术面试场景。

💪 投资一份面试急救包,收获一份心仪的Offer!

🎉 一、错误日志

[2025-10-12 14:35:12.888] ERROR 12345 --- [nio-8080-exec-5] c.e.u.s.impl.UserServiceImpl : [UserService] Failed to get user by id: 15002
org.springframework.transaction.CannotCreateTransactionException: Could not open JDBC Connection for transaction; nested exception is java.sql.SQLTransientConnectionException: HikariPool-1 - Connection is not available, request timed out after 30000ms.
at org.springframework.jdbc.datasource.DataSourceTransactionManager.doBegin(DataSourceTransactionManager.java:309) ~[spring-jdbc-5.3.23.jar:5.3.23]
at org.springframework.transaction.support.AbstractPlatformTransactionManager.getTransaction(AbstractPlatformTransactionManager.java:378) ~[spring-tx-5.3.23.jar:5.3.23]
at org.springframework.transaction.interceptor.TransactionAspectSupport.createTransactionIfNecessary(TransactionAspectSupport.java:595) ~[spring-tx-5.3.23.jar:5.3.23]
at org.springframework.transaction.interceptor.TransactionAspectSupport.invokeWithinTransaction(TransactionAspectSupport.java:382) ~[spring-tx-5.3.23.jar:5.3.23]
at org.springframework.transaction.interceptor.TransactionInterceptor.invoke(TransactionInterceptor.java:119) ~[spring-tx-5.3.23.jar:5.3.23]
at org.springframework.aop.framework.ReflectiveMethodInvocation.proceed(ReflectiveMethodInvocation.java:186) ~[spring-aop-5.3.23.jar:5.3.23]
at org.springframework.aop.framework.CglibAopProxy$CglibMethodInvocation.proceed(CglibAopProxy.java:753) ~[spring-aop-5.3.23.jar:5.3.23]
at org.springframework.aop.framework.CglibAopProxy$DynamicAdvisedInterceptor.intercept(CglibAopProxy.java:698) ~[spring-aop-5.3.23.jar:5.3.23]
at com.example.user.service.impl.UserServiceImpl$$EnhancerBySpringCGLIB$$1.getUserById(<generated>) ~[classes/:na]
at com.example.user.controller.UserController.getUser(UserController.java:45) ~[classes/:na]
at java.base/jdk.internal.reflect.NativeMethodAccessorImpl.invoke0(Native Method) ~[na:na]
at java.base/jdk.internal.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:77) ~[na:na]
at java.base/jdk.internal.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) ~[na:na]
at java.base/java.lang.reflect.Method.invoke(Method.java:568) ~[na:na]
at org.springframework.web.method.support.InvocableHandlerMethod.doInvoke(InvocableHandlerMethod.java:205) ~[spring-web-5.3.23.jar:5.3.23]
at org.springframework.web.method.support.InvocableHandlerMethod.invokeForRequest(InvocableHandlerMethod.java:150) ~[spring-web-5.3.23.jar:5.3.23]
... (更多Spring MVC调用链,此处省略)
Caused by: java.sql.SQLTransientConnectionException: HikariPool-1 - Connection is not available, request timed out after 30000ms.
at com.zaxxer.hikari.pool.HikariPool.createTimeoutException(HikariPool.java:696) ~[HikariCP-4.0.3.jar:na]
at com.zaxxer.hikari.pool.HikariPool.getConnection(HikariPool.java:197) ~[HikariCP-4.0.3.jar:na]
at com.zaxxer.hikari.pool.HikariPool.getConnection(HikariPool.java:162) ~[HikariCP-4.0.3.jar:na]
at com.zaxxer.hikari.HikariDataSource.getConnection(HikariDataSource.java:128) ~[HikariCP-4.0.3.jar:na]
at org.springframework.jdbc.datasource.DataSourceTransactionManager.doBegin(DataSourceTransactionManager.java:246) ~[spring-jdbc-5.3.23.jar:5.3.23]
... 85 common frames omitted
Caused by: java.sql.SQLException: Connections could not be acquired from the underlying database!
at com.zaxxer.hikari.pool.HikariPool.getConnection(HikariPool.java:195) ~[HikariCP-4.0.3.jar:na]
... 88 common frames omitted
错误日志环境信息:
- JDK版本:17.0.8
- 操作系统:Linux 6.5.0-060000-generic
- Spring Boot版本:2.7.18
- HikariCP版本:4.0.3
- 数据库:MySQL 8.0.33
- 配置项:
  - hikariMaximumPoolSize: 20
  - hikariMaximumPoolSize: 20
  - hikariConnectionTimeout: 30000
  - hikariLeakDetectionThreshold: 20000
- 请求参数:user_id=15002
- 数据库操作:SELECT * FROM users WHERE id=?
- 系统日志片段:
  [2025-10-12 14:35:12.885] INFO 12345 --- [nio-8080-exec-5] c.e.u.s.impl.UserServiceImpl : [UserService] Attempting to acquire connection from HikariPool-1
  [2025-10-12 14:35:12.885] INFO 12345 --- [nio-8080-exec-5] c.e.u.s.impl.UserServiceImpl : [UserService] Connection acquisition timed out after 30 seconds

🎉 二、业务场景

在用户注册模块中,当用户尝试通过API获取用户信息(GET /api/users/{id})时,系统抛出事务创建失败异常。具体表现为:

  1. 用户提交请求后,控制台立即显示"Connection acquisition timed out after 30 seconds"
  2. 请求响应时间从平均200ms突增至超过60秒
  3. 日志显示HikariPool-1连接池尝试获取连接30秒未果
  4. 30分钟后相同操作成功,表明问题具有周期性

🎉 三、问题排查过程

📝 1. 初步分析

观察到的错误现象:

  • 系统提示事务创建失败(CannotCreateTransactionException)
  • 连接获取超时30秒(connectionTimeout=30000)
  • HikariPool-1连接池使用率持续100%
  • 请求响应时间呈指数级增长

错误日志关键字提取:

  • 关键错误类:org.springframework.transaction.CannotCreateTransactionException
  • 错误消息:HikariPool-1 - Connection is not available, request timed out after 30000ms
  • 异常发生位置:UserServiceImpl$$EnhancerBySpringCGLIB$$1.getUserById
  • 相关上下文:user_id=15002SELECT * FROM users WHERE id=15002

初步假设:

  1. 连接池参数配置不合理(maximumPoolSize不足)
  2. 数据库服务存在周期性故障(如MySQL死锁)
  3. 网络延迟导致连接超时(TCP Keepalive未配置)
  4. 数据库驱动版本不兼容HikariCP 4.0.3

计划排查方向:

  1. HikariCP连接池参数优化
  2. 数据库服务健康检查
  3. 网络连接诊断
  4. 驱动版本兼容性验证
📝 2. 详细排查步骤

步骤1:检查HikariCP连接池参数

  • 操作内容:修改application.yml配置
    spring.datasource.hikari:
      maximumPoolSize: 50
      connectionTimeout: 60000
      minimumIdle: 10
      leakDetectionThreshold: 60000
    
  • 使用的工具:IntelliJ IDEA + Spring Boot Admin
  • 检查结果:maximumPoolSize从20调整为50,connectionTimeout从30s延长至60s
  • 分析判断:连接池容量不足可能是主因,但超时时间设置过短无法覆盖网络抖动

步骤2:验证数据库服务状态

  • 操作内容:执行SHOW ENGINE INNODB STATUS;
  • 预期结果:无错误信息
  • 实际结果:显示"Database was closed and opened by the server"
  • 新的发现:MySQL出现异常关闭事件

步骤3:数据库连接测试

  • 操作内容:使用mysql -u root -p直接登录
  • 预期结果:成功连接
  • 实际结果:登录失败(权限问题)
  • 新的发现:数据库root用户密码过期

步骤4:查阅HikariCP源码

  • 查阅内容:src/main/java/com/zaxxer/hikari/HikariDataSource.java
  • 关键发现:HikariDataSource使用JDBC 4.2+的自动连接回收机制
  • 对照分析:MySQL 8.0.33支持JDBC 8.0,但配置中未启用自动回收

步骤5:压力测试验证

  • 测试方法:使用JMeter模拟500并发请求
  • 测试数据:user_id从1到10000
  • 测试结果:连接获取失败率从80%降至5%
  • 结论:连接池参数优化有效,但未完全解决问题
📝 3. 尝试的解决方案

方案一:调整HikariCP参数

  • 提出背景:基于连接池使用率100%的观察
  • 具体操作:
    1. maximumPoolSize从20提升至100
    2. 增加连接超时时间到120秒
    3. 启用leakDetectionThreshold自动回收
  • 执行结果:连接获取失败率从80%降至35%
  • 失败原因:数据库服务仍存在异常关闭

方案二:修复数据库服务

  • 提出背景:发现MySQL异常关闭事件
  • 具体操作:
    1. 更新root用户密码
    2. 执行FLUSH PRIVILEGES;
    3. 修复InnoDB引擎状态
  • 执行结果:数据库服务恢复稳定
  • 失败原因:未配置自动回收机制导致泄漏

方案三:启用JDBC自动回收

  • 提出背景:源码中发现自动回收机制
  • 具体操作:
    1. 添加配置:spring.datasource.hikari.autoLeakDetection: true
    2. 设置回收阈值:leakDetectionThreshold: 60000
  • 执行结果:连接泄漏率从35%降至8%
  • 失败原因:MySQL 8.0.33兼容性问题

方案四:升级HikariCP版本

  • 提出背景:版本4.0.3存在已知问题
  • 具体操作:
    1. 升级至HikariCP 4.0.5
    2. 更新依赖版本:
      <dependency>
        <groupId>com.zaxxer</groupId>
        <artifactId>HikariCP</artifactId>
        <version>4.0.5</version>
      </dependency>
      
  • 执行结果:连接获取失败率降至0.5%
  • 失败原因:未清理旧连接池实例

🎉 最终有效解决方案

  1. 配置优化

    spring.datasource.hikari:
      maximumPoolSize: 100
      connectionTimeout: 120000
      minimumIdle: 20
      leakDetectionThreshold: 60000
      autoLeakDetection: true
    
  2. 数据库服务修复

    FLUSH PRIVILEGES;
    SHOW ENGINE INNODB STATUS\G;
    
  3. 版本升级

    <dependency>
      <groupId>com.zaxxer</groupId>
      <artifactId>HikariCP</artifactId>
      <version>4.0.5</version>
    </dependency>
    
  4. 连接池清理

    HikariDataSource dataSource = (HikariDataSource) SpringContextHolder.getBean("dataSource");
    dataSource.close();
    dataSource.init();
    
  5. 监控配置

    spring-boot-starter-actuator:
      metrics:
        tags:
          application: ${spring.application.name}
    
  6. 数据库监控

    CREATE TABLE connection_usage (
      timestamp DATETIME,
      count INT,
      wait_time INT
    ) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4;
    

该方案实施后,系统连接池使用率稳定在85%以下,事务创建失败率从100%降至0.3%,API响应时间从最长60秒缩短至500ms以内。

优快云

博主分享

📥博主的人生感悟和目标

Java程序员廖志伟

📙经过多年在优快云创作上千篇文章的经验积累,我已经拥有了不错的写作技巧。同时,我还与清华大学出版社签下了四本书籍的合约,并将陆续出版。

面试备战资料

八股文备战
场景描述链接
时间充裕(25万字)Java知识点大全(高频面试题)Java知识点大全
时间紧急(15万字)Java高级开发高频面试题Java高级开发高频面试题

理论知识专题(图文并茂,字数过万)

技术栈链接
RocketMQRocketMQ详解
KafkaKafka详解
RabbitMQRabbitMQ详解
MongoDBMongoDB详解
ElasticSearchElasticSearch详解
ZookeeperZookeeper详解
RedisRedis详解
MySQLMySQL详解
JVMJVM详解

集群部署(图文并茂,字数过万)

技术栈部署架构链接
MySQL使用Docker-Compose部署MySQL一主二从半同步复制高可用MHA集群Docker-Compose部署教程
Redis三主三从集群(三种方式部署/18个节点的Redis Cluster模式)三种部署方式教程
RocketMQDLedger高可用集群(9节点)部署指南
Nacos+Nginx集群+负载均衡(9节点)Docker部署方案
Kubernetes容器编排安装最全安装教程

开源项目分享

项目名称链接地址
高并发红包雨项目https://gitee.com/java_wxid/red-packet-rain
微服务技术集成demo项目https://gitee.com/java_wxid/java_wxid

管理经验

【公司管理与研发流程优化】针对研发流程、需求管理、沟通协作、文档建设、绩效考核等问题的综合解决方案:https://download.youkuaiyun.com/download/java_wxid/91148718

希望各位读者朋友能够多多支持!

现在时代变了,信息爆炸,酒香也怕巷子深,博主真的需要大家的帮助才能在这片海洋中继续发光发热,所以,赶紧动动你的小手,点波关注❤️,点波赞👍,点波收藏⭐,甚至点波评论✍️,都是对博主最好的支持和鼓励!

🔔如果您需要转载或者搬运这篇文章的话,非常欢迎您私信我哦~

基于数据驱动的 Koopman 算子的递归神经网络模型线性化,用于纳米定位系统的预测控制研究(Matlab代码实现)内容概要:本文围绕“基于数据驱动的 Koopman 算子的递归神经网络模型线性化,用于纳米定位系统的预测控制研究”展开,提出了一种结合数据驱动方法与Koopman算子理论的递归神经网络(RNN)模型线性化方法,旨在提升纳米定位系统的预测控制精度与动态响应能力。研究通过构建数据驱动的线性化模型,克服了传统非线性系统建模复杂、计算开销大的问题,并在Matlab平台上实现了完整的算法仿真与验证,展示了该方法在高精度定位控制中的有效性与实用性。; 适合人群:具备一定自动化、控制理论或机器学习背景的科研人员与工程技术人员,尤其是从事精密定位、智能控制、非线性系统建模与预测控制相关领域的研究生与研究人员。; 使用场景及目标:①应用于纳米级精密定位系统(如原子力显微镜、半导体制造设备)中的高性能预测控制;②为复杂非线性系统的数据驱动建模与线性化提供新思路;③结合深度学习与经典控制理论,推动智能控制算法的实际落地。; 阅读建议:建议读者结合Matlab代码实现部分,深入理解Koopman算子与RNN结合的建模范式,重点关注数据预处理、模型训练与控制系统集成等关键环节,并可通过替换实际系统数据进行迁移验证,以掌握该方法的核心思想与工程应用技巧。
基于粒子群算法优化Kmeans聚类的居民用电行为分析研究(Matlb代码实现)内容概要:本文围绕基于粒子群算法(PSO)优化Kmeans聚类的居民用电行为分析展开研究,提出了一种结合智能优化算法与传统聚类方法的技术路径。通过使用粒子群算法优化Kmeans聚类的初始聚类中心,有效克服了传统Kmeans算法易陷入局部最优、对初始值敏感的问题,提升了聚类的稳定性和准确性。研究利用Matlab实现了该算法,并应用于居民用电数据的行为模式识别与分类,有助于精细化电力需求管理、用户画像构建及个性化用电服务设计。文档还提及相关应用场景如负荷预测、电力系统优化等,并提供了配套代码资源。; 适合人群:具备一定Matlab编程基础,从事电力系统、智能优化算法、数据分析等相关领域的研究人员或工程技术人员,尤其适合研究生及科研人员。; 使用场景及目标:①用于居民用电行为的高效聚类分析,挖掘典型用电模式;②提升Kmeans聚类算法的性能,避免局部最优问题;③为电力公司开展需求响应、负荷预测和用户分群管理提供技术支持;④作为智能优化算法与机器学习结合应用的教学与科研案例。; 阅读建议:建议读者结合提供的Matlab代码进行实践操作,深入理解PSO优化Kmeans的核心机制,关注参数设置对聚类效果的影响,并尝试将其应用于其他相似的数据聚类问题中,以加深理解和拓展应用能力。
在大数据技术快速发展的背景下,网络爬虫已成为信息收集与数据分析的关键工具。Python凭借其语法简洁和功能丰富的优势,被广泛用于开发各类数据采集程序。本项研究“基于Python的企查查企业信息全面采集系统”即在此趋势下设计,旨在通过编写自动化脚本,实现对企查查平台所公示的企业信用数据的系统化抓取。 该系统的核心任务是构建一个高效、可靠且易于扩展的网络爬虫,能够模拟用户登录企查查网站,并依据预设规则定向获取企业信息。为实现此目标,需重点解决以下技术环节:首先,必须深入解析目标网站的数据组织与呈现方式,包括其URL生成规则、页面HTML架构以及可能采用的JavaScript动态渲染技术。准确掌握这些结构特征是制定有效采集策略、保障数据完整与准确的前提。 其次,针对网站可能设置的反爬虫机制,需部署相应的应对方案。例如,通过配置模拟真实浏览器的请求头部信息、采用多代理IP轮换策略、合理设置访问时间间隔等方式降低被拦截风险。同时,可能需要借助动态解析技术处理由JavaScript加载的数据内容。 在程序开发层面,将充分利用Python生态中的多种工具库:如使用requests库发送网络请求,借助BeautifulSoup或lxml解析网页文档,通过selenium模拟浏览器交互行为,并可基于Scrapy框架构建更复杂的爬虫系统。此外,json库用于处理JSON格式数据,pandas库则协助后续的数据整理与分析工作。 考虑到采集的数据规模可能较大,需设计合适的数据存储方案,例如选用MySQL或MongoDB等数据库进行持久化保存。同时,必须对数据进行清洗、去重与结构化处理,以确保其质量满足后续应用需求。 本系统还需包含运行监控与维护机制。爬虫执行过程中可能遭遇网站结构变更、数据格式调整等意外情况,需建立及时检测与自适应调整的能力。通过定期分析运行日志,评估程序的效率与稳定性,并持续优化其性能表现。 综上所述,本项目不仅涉及核心爬虫代码的编写,还需在反爬应对、数据存储及系统维护等方面进行周密设计。通过完整采集企查查的企业数据,该系统可为市场调研、信用评价等应用领域提供大量高价值的信息支持。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值