原题传送门
这道题数据范围太水了
暴力:枚举答案,删掉点,看看两个中心是否联通
如何判断连通性:
- B f s Bfs Bfs,复杂度 O ( n ) O(n) O(n)
- 并查集,复杂度 O ( m ) O(m) O(m)
反正数据水,我直接上并查集
顺手连了个tarjan求割点
因为答案只可能出现在割点中,稍稍小优化一下
Code:
#include <bits/stdc++.h>
#define maxn 10010
using namespace std;
struct Edge{
int to, next;
}edge[maxn << 1];
struct Line{
int x, y;
}line[maxn];
int num, head[maxn], Index, dfn[maxn], low[maxn], cut[maxn];
int n, m, f[maxn], x, y;
inline int read(){
int s = 0, w = 1;
char c = getchar();
for (; !isdigit(c); c = getchar()) if (c == '-') w = -1;
for (; isdigit(c); c= getchar()) s = (s << 1) + (s << 3) + (c ^ 48);
return s * w;
}
void addedge(int x, int y){ edge[++num] = (Edge) { y, head[x] }; head[x] = num; }
void tarjan(int u, int fa){
dfn[u] = low[u] = ++Index;
int child = 0;
for (int i = head[u]; i; i = edge[i].next){
int v = edge[i].to;
if (!dfn[v]){
++child;
tarjan(v, fa);
low[u] = min(low[u], low[v]);
if (u != fa && low[v] >= dfn[u]) cut[u] = 1;
}
low[u] = min(low[u], dfn[v]);
}
if (u == fa && child >= 2) cut[u] = 1;
}
int get(int k){ return k == f[k] ? k : f[k] = get(f[k]); }
void merge(int x, int y){
int s1 = get(x), s2 = get(y);
if (s1 != s2) f[s1] = s2;
}
bool check(int u){
for (int i = 1; i <= n; ++i) f[i] = i;
for (int i = 1; i <= m; ++i)
if (line[i].x != u && line[i].y != u) merge(line[i].x, line[i].y);
return get(x) != get(y);
}
int main(){
n = read();
x = read(), y = read();
while (x || y){
line[++m] = (Line) { x,y };
addedge(x, y); addedge(y, x);
x = read(), y = read();
}
x = read(), y = read();
for (int i = 1; i <= n; ++i)
if (!dfn[i]) tarjan(i, i);
for (int i = 1; i <= n; ++i)
if (cut[i]) if (check(i)){
printf("%d\n", i); return 0;
}
puts("No solution");
return 0;
}

本文介绍了一种使用并查集和Tarjan算法解决特定图论问题的方法。通过枚举答案并删除图中的顶点来判断两个指定点是否仍然连通。利用并查集进行连通性检查,并借助Tarjan算法找到所有割点,进一步优化解决方案。
3132

被折叠的 条评论
为什么被折叠?



