目录
基于云端数据科学协同平台 ModelWhale 的 WRF 模式
ModelWhale 为大气科学家们提前预设“WRF 镜像”
ModelWhale 支持多类型本地数据的上传接入与超大数据的云上调用
ModelWhale 的不同功能模块协助研究人员全方位优化 WRF 模式运行的工作流程
ModelWhale 同样能够对 WRF 模式的输出进行可视化后处理与机器学习后加工
ModelWhale 已为多家高校与机构提供 WRF 模式的相关服务
欢迎广大研究人员使用 ModelWhale 在线运行 WRF 模式
WRF(Weather Research and Forecasting Model)是由美国环境预测中心(NCEP)及美国国家大气研究中心(NCAR)等一系列美国科研机构合作开发的一款中尺度数值天气预报模式,因具有可移植、可扩充、易维护及高效率等优势,使其在国内外都得到了广泛的应用。但由于本地 WRF 模式的运行需要基于 Linux 系统,全流程上的编译、安装、前处理、运行及分析过程都具备相当程度的复杂性,因此给相关研究人员带来了不少实操上的困难。
基于此,本文将介绍一种基于云端数据科学协同平台——ModelWhale 的 WRF 模式,在一定程度上多角度多方面地解决上述问题,以期为大气科学领域的研究者们提供更为便捷、实操性更强的中尺度天气预报模式,助力相关科学研究的可持续发展。
传统基于小型计算机本地的 WRF 模式
天气与气候变化是生态环境领域重要的研究对象,对其具备合理的认知是进行生态、环境及能源评估与规划的先决条件,因此,有关天气预报与气候模拟的应用正不断被扩展并深入,WRF 中尺度数值天气预报模式应运而生。
该模式采用 Fortran90 语言编写,因此即使是在不同的平台,只要拥有版本适用的 Fortran 编译器,就可使该模式的源代码得到编译层面的移植,这使其具备了灵活、易维护、可扩展及能够适用于广泛的计算平台等特征。除此之外,相较于其他气候模式,WRF 模式具有先进的数据同化技术、功能强大的嵌套能力及先进的物理过程,使其在对流与中尺度降水处理能力等方面更具优势。
随着 WRF 模式的高速发展,其基于分辨率的适用范围与基于模式模块的应用范围都变得更为广泛。作为大气科学领域实际业务与科学研究场景中不可或缺的工具之一,WRF 模式在区域气候模拟、空气质量模拟、海气耦合及理想实验模拟中都发挥了重要的作用。

WRF 模式运行所输出的可视化结果(图源:网络)
传统基于小型计算机本地 WRF 模式运行过程中现存的问题
WRF 模式由四部分组成,即预处理系统(WPS,用于将数据进行插值与模式标准初始化、定义模式区域及选择地图投影方式)、资料同化系统(WRFDA,包括三维变分同化)、动力内核即主模块(ARW/NMM)及后处理系统(图形软件包)——作为由多个极为复杂的组件构成的应用,WRF 模式的安装过程极为复杂,运行过程也极为耗时。
首先,针对安装过程,WRF 模式除了需要提前配置 Linux 操作系统,还需准备大量依赖库,如在安装 WPS 时还需安装 zlib、libpng 及 Jasper 用以读取 GRIB2 格式的气象数据,安装主模块前也需安装 Intel Fortran、netCDF4 及 HDF5 支持库,若有并行运算的需求,还需安装 OpenMPI 或 MPICH。在传统小型服务器上,一般采用 sudo apt-get install 命令安装软件,并进入 bashrc 设置对应软件与库路径的环境变量,十分麻烦,且常因软件版本、相互依赖关系及系统环境的兼容性问题导致安装报错,耗费过多的时间。

一用户在安装 WRF 模式时出现编译失败的问题(图源:网络)
而针对 WRF 模式的运行过程,若使用传统单 CPU 单核的个人单机作为载体,即便是常规项目,往往也需要运行一天以上,同时,还极易出现运行报错或电脑崩溃等其他问题,极大程度上拖慢了数据生产效率,消耗科研人员过多的时间与精力。
为减小安装困难、弥补算力不足,除了在已经完成环境布置的实验室电脑、大型机或超级计算机上直接运行 WRF 模式,可行性与实操性更强的方法是将个人单机接入超算中心远程访问,又或是选取一已预装相关镜像的在线大数据平台,在线完成全套 WRF 模式的运行与结果输出。本文就将介绍一种基于云端数据科学协同平台——ModelWhale 的 WRF 中尺度数值天气预报模式。
基于云端数据科学协同平台 ModelWhale 的 WRF 模式
ModelWhale 是和鲸科技旗下的一款数据科学协同平台,集数据管理、建模分析、模型训练管理、算力资源管理及任务管理等功能于一身,支持 Python 及 R 等编程语言,通过逐级开放的数据基础设施与 Jupyter Notebook 交互式、Canvas 拖拽式、CloudIDE 三种分析模式及即开即用的云端分析环境,为各领域科研工作者及团队解决数据安全应用、底层工程繁复及研究成果流转复现困难等问题,从而使数据驱动的研究更为便捷高效。若是能够在 ModelWhale 上运行 WRF 模式,那么该云端数据科学协同平台能够在以下几个方面为大气科学家们予以技术上的支持,大大提

本文介绍了ModelWhale如何简化传统WRF模式的安装与运行,提供预设镜像、云端算力和数据管理,以及后处理与机器学习支持,提升大气科学家的科研效率。
最低0.47元/天 解锁文章
1866

被折叠的 条评论
为什么被折叠?



