第10周、项目1—二叉树算法库

本文详细介绍了二叉树的链式存储结构实现,包括创建、输出、查找、深度计算和释放操作,并通过具体实例进行了测试。

问题及代码:

(1)测试函数:main.cpp,完成相关的测试工作;

/*
 *Copyright(c) 2015,烟台大学计算机与控制工程学院
 *All rights reserved.
 *文件名称:test.cpp
 *作    者:焦梦真
 *完成日期:2015年11月2日
 *版 本 号;v1.0
 *
 *问题描述:定义二叉树的链式存储结构,实现其基本运算,并完成测试。
 *输入描述:
 *程序输出:
 */
#include <stdio.h>
#include "btree.h"

int main()
{
    BTNode *b,*p,*lp,*rp;;
    printf("  (1)创建二叉树:");
    CreateBTNode(b,"A(B(D,E(H(J,K(L,M(,N))))),C(F,G(,I)))");
    printf("\n");
    printf("  (2)输出二叉树:");
    DispBTNode(b);
    printf("\n");
    printf("  (3)查找H节点:");
    p=FindNode(b,'H');
    if (p!=NULL)
    {
        lp=LchildNode(p);
        if (lp!=NULL)
            printf("左孩子为%c ",lp->data);
        else
            printf("无左孩子 ");
        rp=RchildNode(p);
        if (rp!=NULL)
            printf("右孩子为%c",rp->data);
        else
            printf("无右孩子 ");
    }
    else
        printf(" 未找到!");
    printf("\n");
    printf("  (4)二叉树b的深度:%d\n",BTNodeDepth(b));
    printf("  (5)释放二叉树b\n");
    DestroyBTNode(b);
    return 0;
}

(2)头文件:btree.h,包含定义顺序表数据结构的代码、宏定义、要实现算法的函数的声明;

#ifndef BTREE_H_INCLUDED
#define BTREE_H_INCLUDED

#define MaxSize 100
typedef char ElemType;
typedef struct node
{
    ElemType data;              //数据元素
    struct node *lchild;        //指向左孩子
    struct node *rchild;        //指向右孩子
} BTNode;
void CreateBTNode(BTNode *&b,char *str);        //由str串创建二叉链
BTNode *FindNode(BTNode *b,ElemType x);     //返回data域为x的节点指针
BTNode *LchildNode(BTNode *p);  //返回*p节点的左孩子节点指针
BTNode *RchildNode(BTNode *p);  //返回*p节点的右孩子节点指针
int BTNodeDepth(BTNode *b); //求二叉树b的深度
void DispBTNode(BTNode *b); //以括号表示法输出二叉树
void DestroyBTNode(BTNode *&b);  //销毁二叉树

#endif // BTREE_H_INCLUDED

(3)源文件:btree.cpp,包含实现各种算法的函数的定义;

#include <stdio.h>
#include <malloc.h>
#include "btree.h"

void CreateBTNode(BTNode *&b,char *str)     //由str串创建二叉链
{
    BTNode *St[MaxSize],*p=NULL;
    int top=-1,k,j=0;
    char ch;
    b=NULL;             //建立的二叉树初始时为空
    ch=str[j];
    while (ch!='\0')    //str未扫描完时循环
    {
        switch(ch)
        {
        case '(':
            top++;
            St[top]=p;
            k=1;
            break;      //为左节点
        case ')':
            top--;
            break;
        case ',':
            k=2;
            break;                          //为右节点
        default:
            p=(BTNode *)malloc(sizeof(BTNode));
            p->data=ch;
            p->lchild=p->rchild=NULL;
            if (b==NULL)                    //p指向二叉树的根节点
                b=p;
            else                            //已建立二叉树根节点
            {
                switch(k)
                {
                case 1:
                    St[top]->lchild=p;
                    break;
                case 2:
                    St[top]->rchild=p;
                    break;
                }
            }
        }
        j++;
        ch=str[j];
    }
}
BTNode *FindNode(BTNode *b,ElemType x)  //返回data域为x的节点指针
{
    BTNode *p;
    if (b==NULL)
        return NULL;
    else if (b->data==x)
        return b;
    else
    {
        p=FindNode(b->lchild,x);
        if (p!=NULL)
            return p;
        else
            return FindNode(b->rchild,x);
    }
}
BTNode *LchildNode(BTNode *p)   //返回*p节点的左孩子节点指针
{
    return p->lchild;
}
BTNode *RchildNode(BTNode *p)   //返回*p节点的右孩子节点指针
{
    return p->rchild;
}
int BTNodeDepth(BTNode *b)  //求二叉树b的深度
{
    int lchilddep,rchilddep;
    if (b==NULL)
        return(0);                          //空树的高度为0
    else
    {
        lchilddep=BTNodeDepth(b->lchild);   //求左子树的高度为lchilddep
        rchilddep=BTNodeDepth(b->rchild);   //求右子树的高度为rchilddep
        return (lchilddep>rchilddep)? (lchilddep+1):(rchilddep+1);
    }
}
void DispBTNode(BTNode *b)  //以括号表示法输出二叉树
{
    if (b!=NULL)
    {
        printf("%c",b->data);
        if (b->lchild!=NULL || b->rchild!=NULL)
        {
            printf("(");
            DispBTNode(b->lchild);
            if (b->rchild!=NULL) printf(",");
            DispBTNode(b->rchild);
            printf(")");
        }
    }
}
void DestroyBTNode(BTNode *&b)   //销毁二叉树
{
    if (b!=NULL)
    {
        DestroyBTNode(b->lchild);
        DestroyBTNode(b->rchild);
        free(b);
    }
}

运行结果:

下载方式:https://pan.quark.cn/s/b4d8292ba69a 在构建食品品牌的市场整合营销推广方案时,我们必须首先深入探究品牌的由来、顾客的感知以及市场环境。 此案例聚焦于一款名为“某饼干产品”的食品,该产品自1998年进入河南市场以来,经历了销售业绩的波动。 1999至2000年期间,其销售额取得了明显的上升,然而到了2001年则出现了下滑。 在先前的宣传活动中,品牌主要借助大型互动活动如ROAD SHOW来吸引顾客,但收效甚微,这揭示了宣传信息与顾客实际认同感之间的偏差。 通过市场环境剖析,我们了解到消费者对“3+2”苏打夹心饼干的印象是美味、时尚且充满活力,但同时亦存在口感腻、价位偏高、饼身坚硬等负面评价。 实际上,该产品可以塑造为兼具美味、深度与创新性的休闲食品,适宜在多种情境下分享。 这暗示着品牌需更精确地传递产品特性,同时消解消费者的顾虑。 在策略制定上,我们可考虑将新产品与原有的3+2苏打夹心进行协同推广。 这种策略的长处在于能够借助既有产品的声誉和市场占有率,同时通过新产品的加入,刷新品牌形象,吸引更多元化的消费群体。 然而,这也可能引发一些难题,例如如何合理分配新旧产品间的资源,以及如何保障新产品的独特性和吸引力不被既有产品所掩盖。 为了提升推广成效,品牌可以实施以下举措:1. **定位修正**:基于消费者反馈,重新确立产品定位,突出其美味、创新与共享的特性,减少消费者感知的缺陷。 2. **创新宣传**:宣传信息应与消费者的实际体验相契合,运用更具魅力的创意手段,例如叙事式营销,让消费者体会到产品带来的愉悦和情感共鸣。 3. **渠道选择**:在目标消费者常去的场所开展活动,例如商业中心、影院或在线平台,以提高知名度和参与度。 4. **媒体联...
霍夫曼编码是一种广泛使用的无损数据压缩算法,其核心思想是通过构建一棵带权路径最短的二叉树(霍夫曼树),为高频出现的字符分配较短的编码,为低频出现的字符分配较长的编码,从而实现高效压缩。在 Python 中,虽然标准库中没有直接实现霍夫曼编码的模块,但可以借助一些第三方库或自行实现相关算法。 ### 1. 使用 `bitarray` 库进行位操作 霍夫曼编码涉及大量的位操作,例如将字符编码为二进制串并进行打包和解包。Python 中的 `bitarray` 库非常适合这一任务,它提供了高效的位数组操作,便于构建和处理二进制数据流。 安装方式: ```bash pip install bitarray ``` 示例代码片段: ```python from bitarray import bitarray # 示例字符编码 code_table = { 'a': bitarray('0'), 'b': bitarray('10'), 'c': bitarray('11') } # 编码过程 text = "abac" encoded = bitarray() for char in text: encoded.extend(code_table[char]) # 写入文件 with open('compressed.bin', 'wb') as f: encoded.tofile(f) ``` ### 2. 自行实现霍夫曼编码类 虽然没有现成的库直接提供霍夫曼编码功能,但可以根据算法原理自行实现。通常包括以下组件: - **节点类**:用于构建霍夫曼树 - **优先队列**:使用 `heapq` 模块实现最小堆 - **编码与解码函数** 示例代码: ```python import heapq from collections import Counter class HuffmanNode: def __init__(self, char, freq): self.char = char self.freq = freq self.left = None self.right = None def __lt__(self, other): return self.freq < other.freq def build_huffman_tree(freq_map): heap = [HuffmanNode(char, freq) for char, freq in freq_map.items()] heapq.heapify(heap) while len(heap) > 1: left = heapq.heappop(heap) right = heapq.heappop(heap) merged = HuffmanNode(None, left.freq + right.freq) merged.left = left merged.right = right heapq.heappush(heap, merged) return heap[0] ``` ### 3. 霍夫曼编码的应用场景 基于纯霍夫曼算法的压缩程序能够对未经压缩的文件格式起到压缩作用,特别是对字节种类不多、重复次数多的文件格式如 BMP 位图、AVI 视频等能够起到非常好的压缩效果,但对于本身已经经过压缩的文件格式如 DOCX、MP4 等基本无效 [^2]。 此外,在实际运行测试过程中发现,对于权值相同的字符,每次迭代排序时编码要么是 0、要么是 1,这往往造成成对的编译码错误,问题主要出在以下代码中: ```python sorts = sorted(l, key=lambda x: x.value, reverse=False) ``` 因此,在实现过程中应特别注意节点排序策略,确保编码的一致性和正确性 [^3]。 ### 4. 面向对象设计与扩展性 在实现霍夫曼编码的过程中,可以采用面向对象设计来提高代码的可扩展性与灵活性。例如,使用策略模式处理不同的编码策略,使用工厂模式创建节点对象,使用递归模式构建霍夫曼树 [^1]。 ---
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值