第6周、项目4—数制转换

本文介绍如何利用栈数据结构设计算法,实现将十进制整数转换为任意进制数的功能。通过定义顺序栈数据结构、初始化、销毁、检查空栈、入栈、出栈、获取栈顶元素和输出栈的函数,成功完成了数制转换任务。学习心得强调了栈的用途广泛,尤其适用于此类问题。

问题及代码:

(1)测试函数:main.cpp,完成相关的测试工作;

/*
 *Copyright(c) 2015,烟台大学计算机与控制工程学院
 *All rights reserved.
 *文件名称:test.cpp
 *作    者:焦梦真
 *完成日期:2015年10月12日
 *版 本 号;v1.0
 *
 *问题描述:把十进制的整数转换为任一进制数输出。请利用栈设计算法,并实现程序。
 *输入描述:
 *程序输出:
 */
#include <stdio.h>
#include "sqstack.h"

void MultiBaseOutput (int number,int base)
{
    //假设number是非负的十进制整数,输出等值的base进制数
    int i;
    SqStack *S;
    InitStack(S);
    while(number)   //从右向左产生base进制的各位数字,并将其进栈
    {
        Push(S,number%base); //将将余数进栈
        number/=base;
    }
    while(!StackEmpty(S))   //栈非空时退栈输出
    {
        Pop(S, i);
        printf("%d",i);
    }
}
int main()
{
    MultiBaseOutput(10, 2);
    return 0;
}

(2)头文件:sqstack.h,包含定义顺序栈数据结构的代码、宏定义、要实现算法的函数的声明;

#ifndef SQSTACK_H_INCLUDED
#define SQSTACK_H_INCLUDED

#define MaxSize 100
typedef int ElemType;
typedef struct
{
    ElemType data[MaxSize];
    int top;                //栈指针
} SqStack;                  //顺序栈类型定义

void InitStack(SqStack *&s);    //初始化栈
void DestroyStack(SqStack *&s);  //销毁栈
bool StackEmpty(SqStack *s);     //栈是否为空
int StackLength(SqStack *s);  //返回栈中元素个数——栈长度
bool Push(SqStack *&s,ElemType e); //入栈
bool Pop(SqStack *&s,ElemType &e); //出栈
bool GetTop(SqStack *s,ElemType &e); //取栈顶数据元素
void DispStack(SqStack *s);  //输出栈

#endif // SQSTACK_H_INCLUDED

(3)源文件:sqstack.cpp,包含实现各种算法的函数的定义;

#include <stdio.h>
#include <malloc.h>
#include "sqstack.h"

void InitStack(SqStack *&s)
{
    s=(SqStack *)malloc(sizeof(SqStack));
    s->top=-1;
}
void DestroyStack(SqStack *&s)
{
    free(s);
}
int StackLength(SqStack *s)  //返回栈中元素个数——栈长度
{
    return(s->top+1);
}
bool StackEmpty(SqStack *s)
{
    return(s->top==-1);
}
bool Push(SqStack *&s,ElemType e)
{
    if (s->top==MaxSize-1)    //栈满的情况,即栈上溢出
        return false;
    s->top++;
    s->data[s->top]=e;
    return true;
}
bool Pop(SqStack *&s,ElemType &e)
{
    if (s->top==-1)     //栈为空的情况,即栈下溢出
        return false;
    e=s->data[s->top];
    s->top--;
    return true;
}
bool GetTop(SqStack *s,ElemType &e)
{
    if (s->top==-1)         //栈为空的情况,即栈下溢出
        return false;
    e=s->data[s->top];
    return true;
}

void DispStack(SqStack *s)  //输出栈
{
    int i;
    for (i=s->top;i>=0;i--)
        printf("%c ",s->data[i]);
    printf("\n");
}

运行结果:

学习心得:

        栈的用途十分广泛,利用其先进后出的特性,实现数制转换。

 

内容概要:本文提出了一种基于融合鱼鹰算法和柯西变异的改进麻雀优化算法(OCSSA),用于优化变分模态分解(VMD)的参数,进而结合卷积神经网络(CNN)与双向长短期记忆网络(BiLSTM)构建OCSSA-VMD-CNN-BILSTM模型,实现对轴承故障的高【轴承故障诊断】基于融合鱼鹰和柯西变异的麻雀优化算法OCSSA-VMD-CNN-BILSTM轴承诊断研究【西储大学数据】(Matlab代码实现)精度诊断。研究采用西储大学公开的轴承故障数据集进行实验验证,通过优化VMD的模态数和惩罚因子,有效提升了信号分解的准确性与稳定性,随后利用CNN提取故障特征,BiLSTM捕捉时间序列的深层依赖关系,最终实现故障类型的智能识别。该方法在提升故障诊断精度与鲁棒性方面表现出优越性能。; 适合人群:具备一定信号处理、机器学习基础,从事机械故障诊断、智能运维、工业大数据分析等相关领域的研究生、科研人员及工程技术人员。; 使用场景及目标:①解决传统VMD参数依赖人工经验选取的问题,实现参数自适应优化;②提升复杂工况下滚动轴承早期故障的识别准确率;③为智能制造与预测性维护提供可靠的技术支持。; 阅读建议:建议读者结合Matlab代码实现过程,深入理解OCSSA优化机制、VMD信号分解流程以及CNN-BiLSTM网络架构的设计逻辑,重点关注参数优化与故障分类的联动关系,并可通过更换数据集进一步验证模型泛化能力。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值