AI绘画教程分享:Stable Diffusion使用指南,12000+AI关键词大合集

** 01**

图片

首先下载好SD的安装包,用启动器开始运行

02

图片

从这里下载别人的模型套用,可以多多探索一下!以下是各个模型的具体介绍:

图片

03

图片

这就是我们打开的初始界面,常用的就是“文生图”和“图生图”功能,其他的先简单了解一下:

图片

04

图片

提示词可以理解为“关键词”,最好翻译成英文使用,建议旁边开一个翻译器;

使用短的词组,避免需要理解逻辑关系长句子;

关于数量的表达使用数字123。

反向提示词不需要带否定前缀哦!

图片

图片

交替:A|B

融合:A AND B

渐变:【A:B:占比】

(占比:0~1表示百分比,1以上表示步数)

05

以下是各类可供参考的提示词:

图片

图片

图片

图片

图片

图片

图片

06

图片

这么多采样方法是不是眼花缭乱?无聊的话可以每种都多试试,也可以直接参考以下建议:

图片

07

图片

08

好了!了解了这些咱就算是入门了,温馨提示:篇幅有限,已打包文件夹,获取方式在:文末

👉12000+AI关键词大合集👈

最后想说

AIGC(AI Generated
Content)技术,即人工智能生成内容的技术,具有非常广阔的发展前景。随着技术的不断进步,AIGC的应用范围和影响力都将显著扩大。以下是一些关于AIGC技术发展前景的预测和展望:

1、AIGC技术将使得内容创造过程更加自动化,包括文章、报告、音乐、艺术作品等。这将极大地提高内容生产的效率,降低成本。2、在游戏、电影和虚拟现实等领域,AIGC技术将能够创造更加丰富和沉浸式的体验,推动娱乐产业的创新。3、AIGC技术可以帮助设计师和创意工作者快速生成和迭代设计理念,提高创意过程的效率。

未来,AIGC技术将持续提升,同时也将与人工智能技术深度融合,在更多领域得到广泛应用。目前 ControlNet 已经更新到 1.1 版本,相较于 1.0 版本,ControlNet1.1 新增了更多的预处理器和模型,每种模型对应不同的采集方式,再对应不同的应用场景,每种应用场景又有不同的变现空间

我花了一周时间彻底把ControlNet1.1的14种模型研究了一遍,跑了一次全流程,终于将它完整下载好整理成网盘资源。

其总共11 个生产就绪模型、2 个实验模型和 1 个未完成模型,现在就分享给大家,点击下方卡片免费领取。

img

1. 线稿上色

**方法:**通过 ControlNet 边缘检测模型或线稿模型提取线稿(可提取参考图片线稿,或者手绘线稿),再根据提示词和风格模型对图像进行着色和风格化。

**应用模型:**Canny、SoftEdge、Lineart。

Canny 示例:(保留结构,再进行着色和风格化)

img

2. 涂鸦成图

方法:通过 ControlNet 的 Scribble 模型提取涂鸦图(可提取参考图涂鸦,或者手绘涂鸦图),再根据提示词和风格模型对图像进行着色和风格化。

应用模型:Scribble。

Scribble 比 Canny、SoftEdge 和 Lineart 的自由发挥度要更高,也可以用于对手绘稿进行着色和风格处理。Scribble 的预处理器有三种模式:Scribble_hed,Scribble_pidinet,Scribble_Xdog,对比如下,可以看到 Scribble_Xdog 的处理细节更为丰富:

img

Scribble 参考图提取示例(保留大致结构,再进行着色和风格化):

img

3. 建筑/室内设计

**方法:**通过 ControlNet 的 MLSD 模型提取建筑的线条结构和几何形状,构建出建筑线框(可提取参考图线条,或者手绘线条),再配合提示词和建筑/室内设计风格模型来生成图像。

**应用模型:**MLSD。

MLSD 示例:(毛坯变精装)

img

这份完整版的ControlNet 1.1模型我已经打包好,需要的点击下方插件,即可前往免费领取!

4. 颜色控制画面

**方法:**通过 ControlNet 的 Segmentation 语义分割模型,标注画面中的不同区块颜色和结构(不同颜色代表不同类型对象),从而控制画面的构图和内容。

**应用模型:**Seg。

Seg 示例:(提取参考图内容和结构,再进行着色和风格化)

img

如果还想在车前面加一个人,只需在 Seg 预处理图上对应人物色值,添加人物色块再生成图像即可。

img

5. 背景替换

**方法:**在 img2img 图生图模式中,通过 ControlNet 的 Depth_leres 模型中的 remove background 功能移除背景,再通过提示词更换想要的背景。

**应用模型:**Depth,预处理器 Depth_leres。

**要点:**如果想要比较完美的替换背景,可以在图生图的 Inpaint 模式中,对需要保留的图片内容添加蒙版,remove background 值可以设置在 70-80%。

Depth_leres 示例:(将原图背景替换为办公室背景)

img

6. 图片指令

**方法:**通过 ControlNet 的 Pix2Pix 模型(ip2p),可以对图片进行指令式变换。

应用模型:ip2p,预处理器选择 none。

**要点:**采用指令式提示词(make Y into X),如下图示例中的 make it snow,让非洲草原下雪。

Pix2Pix 示例:(让非洲草原下雪)

img

7. 风格迁移

**方法:**通过 ControlNet 的 Shuffle 模型提取出参考图的风格,再配合提示词将风格迁移到生成图上。

**应用模型:**Shuffle。

Shuffle 示例:(根据魔兽道具风格,重新生成一个宝箱道具)

img

8. 色彩继承

**方法:**通过 ControlNet 的 t2iaColor 模型提取出参考图的色彩分布情况,再配合提示词和风格模型将色彩应用到生成图上。

**应用模型:**Color。

Color 示例:(把参考图色彩分布应用到生成图上)

img

这份完整版的ControlNet 1.1模型我已经打包好,需要的点击下方插件,即可前往免费领取!在这里插入图片描述

这里就简单说几种应用:

1. 人物和背景分别控制

2. 三维重建

3. 更精准的图片风格化

4. 更精准的图片局部重绘

以上就是本教程的全部内容了,重点介绍了controlnet模型功能实用,当然还有一些小众的模型在本次教程中没有出现,目前controlnet模型确实还挺多的,所以重点放在了官方发布的几个模型上。

同时大家可能都想学习AI绘画技术,也想通过这项技能真正赚到钱,但是不知道该如何开始学习,因为网上的资料太多太杂乱了,如果不能系统的学习就相当于是白学,因为自身做副业需要,我这边整理了全套的Stable Diffusion入门知识点资料,大家有需要可以直接点击下边卡片获取,希望能够真正帮助到大家。
在这里插入图片描述

AI绘画教程分享:Stable Diffusion使用指南,12000+AI关键词大合集img

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值