[POJ]2533 Longest Ordered Subsequence

本文通过动态规划解决寻找给定序列中最长非降序子序列的问题,详细阐述了解题思路并提供优化后的源代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

[POJ]2533 Longest Ordered Subsequence

问题

Description

A numeric sequence of ai is ordered if a1 < a2 < … < aN. Let the subsequence of the given numeric sequence (a1, a2, …, aN) be any sequence (ai1, ai2, …, aiK), where 1 <= i1 < i2 < … < iK <= N. For example, sequence (1, 7, 3, 5, 9, 4, 8) has ordered subsequences, e. g., (1, 7), (3, 4, 8) and many others. All longest ordered subsequences are of length 4, e. g., (1, 3, 5, 8).
Your program, when given the numeric sequence, must find the length of its longest ordered subsequence.

Input

The first line of input file contains the length of sequence N. The second line contains the elements of sequence - N integers in the range from 0 to 10000 each, separated by spaces. 1 <= N <= 1000

Output

Output file must contain a single integer - the length of the longest ordered subsequence of the given sequence.

Sample Input

7
1 7 3 5 9 4 8

Sample Output

4

分析

题目要求找最长非降序子序列,可以采用动态规划的思想做。

f(i)=1,f(j)+1,1,i = 1seq[i] > seq[j](1 < j < i)seq[i] < seq[j]

源代码

#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;

int main() {
    int N, ans = 1;
    cin >> N;
    vector<int> seq(N, 0), dp(N, 0);
    for (int i = 0; i < N; ++i)
        cin >> seq[i];
    dp[0] = 1;
    for (int i = 1; i < N; ++i) {
        int tmp = 0;
        for (int j = 0; j < i; ++j)
            if (seq[i] > seq[j])
                tmp = max(tmp, dp[j]);
        dp[i] = tmp + 1;
        ans = max(dp[i], ans);
    }
    cout << ans << endl;
    return 0;
}

程序结果

ResultMemoryTimeLanguageCode Length
Accepted244K16MSC++422B

不使用系统库函数max,自己编写后,速度会提升,结果如下:

ResultMemoryTimeLanguageCode Length
Accepted244K0MSC++462B
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值