/**
Triangular Sums
时间限制:3000 ms | 内存限制:65535 KB
难度:2
描述
The nth Triangular number, T(n) = 1 + … + n, is the sum of the first n integers. It is the number of points in a triangular array with n points on side. For example T(4):
X
X X
X X X
X X X X
Write a program to compute the weighted sum of triangular numbers:
W(n) = SUM[k = 1…n; k * T(k + 1)]
输入
The first line of input contains a single integer N, (1 ≤ N ≤ 1000) which is the number of datasets that follow.
Each dataset consists of a single line of input containing a single integer n, (1 ≤ n ≤300), which is the number of points on a side of the triangle.
输出
For each dataset, output on a single line the dataset number (1 through N), a blank, the value of n for the dataset, a blank, and the weighted sum ,W(n), of triangular numbers for n.
样例输入
4
3
4
5
10
样例输出
1 3 45
2 4 105
3 5 210
4 10 2145
*/
#include<iostream>
using namespace std;
int main()
{
int N;
cin>>N;
while(N--)
{
int i,j=1,k;
int sum=0;
cin>>k;
for(i=1;i<=k;i++)
sum+=(i*(i+1)*(i+2))/2;
cout<<j++<<" "<<k<<" "<<sum<<endl;
}
return 0;
}