题目链接:Leapin’s Lizards
题目大意:有若干蜥蜴要逃离所给的矩阵,矩阵上有若干柱子。蜥蜴只能从有柱子的地方开始跳跃,只能跳跃到其他柱子上或界外。柱子有自己的耐久度,每跳一次耐久度就会减1,耐久度为0的时候就不能再跳了。求最后有多少蜥蜴不能逃离矩阵。
解题思路:由于有耐久度的设定,这道题可以用最大流来解决。将源点和所以蜥蜴人所在的位置建边,权值为1;将互相可以抵达的柱子间建边,权值为正无穷;将每个柱子拆成两个店,权值为耐久度;将可以逃离的柱子和汇点建边,权值为耐久度。这道题的输出也要特别注意,就是因为这个无故WA两发,简直心累。
代码如下:
#include <map>
#include <set>
#include <cmath>
#include <queue>
#include <stack>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <iomanip>
#include <iostream>
#include <algorithm>
using namespace std;
typedef long long ll;
typedef pair<int, int> P;
const int inf = 0x3f3f3f3f;
const int maxn = 1e3 + 15;
const int maxm = 1e6 + 15;
struct Edge {
int to, cap, next;
};
int ecnt, st, ed, m, n;
Edge es[maxm];
int cur[maxn], dep[maxn], head[maxn], cost[30][30];
class Dinic {
public:
void init(){
memset(head, -1, sizeof head);
ecnt = 0;
}
void add_edge(int u, int v, int cap) {
es[ecnt].to = v;
es[ecnt].next = head[u];
es[ecnt].cap = cap;
head[u] = ecnt++;
}
void add_double(int u, int v, int w1, int w2 = 0) {
add_edge(u, v, w1);
add_edge(v, u, w2);
}
bool BFS() {
queue<int> q; q.push(st);
memset(dep, 0x3f, sizeof dep); dep[st] = 0;
while(q.size() && dep[ed] == inf) {
int u = q.front(); q.pop();
for(int i = head[u]; ~i; i = es[i].next) {
Edge& e = es[i];
if(e.cap > 0 && dep[e.to] == inf) {
dep[e.to] = dep[u] + 1;
q.push(e.to);
}
}
}
return dep[ed] < inf;
}
int DFS(int u, int maxflow) {
if(u == ed) return maxflow;
int res = 0;
for(int i = cur[u]; ~i; i = es[i].next) {
Edge& e = es[i];
if(dep[e.to] == dep[u] + 1 && e.cap > 0) {
int flow = DFS(e.to, min(maxflow, e.cap));
cur[u] = i;
res += flow; maxflow -= flow;
es[i].cap -= flow;
es[i ^ 1].cap += flow;
if(!maxflow) return res;
}
}
dep[u] = inf;
return res;
}
int MaxFlow(){
int ans = 0;
while(BFS()) {
for(int i = st; i <= ed; i++) cur[i] = head[i];
ans += DFS(st, inf);
}
return ans;
}
};
inline int read() {
char c = getchar();
while(!isdigit(c)) c = getchar();
int x = 0;
while(isdigit(c)) {
x = x * 10 + c - '0';
c = getchar();
}
return x;
}
int main(){
#ifdef NEKO
freopen("Nya.txt", "r", stdin);
#endif
ios::sync_with_stdio(false); cin.tie(0);
int t, leap, cnt, kase = 1;
cin >> t; Dinic dic;
while(t--) {
vector<P> pill;
cin >> n >> leap; string s;
for(int i = 1; i <= n; i++) {
cin >> s; m = s.size();
for(int j = 1; j <= m; j++) {
cost[i][j] = s[j - 1] - '0';
if(cost[i][j]) pill.push_back(P(i, j));
}
}
dic.init();
st = 0, ed = 2 * n * m + 1; cnt = 0;
for(int i = 1; i <= n; i++) {
cin >> s;
for(int j = 1; j <= m; j++) {
if(s[j - 1] == 'L') {
cnt++;
dic.add_double(st, (i - 1) * m + j, 1);
}
}
}
for(int i = 0; i < pill.size() - 1; i++) {
for(int j = i + 1; j < pill.size(); j++) {
int x = (pill[i].first - pill[j].first) * (pill[i].first - pill[j].first);
int y = (pill[i].second - pill[j].second) * (pill[i].second - pill[j].second);
int l = (pill[i].first - 1) * m + pill[i].second;
int r = (pill[j].first - 1) * m + pill[j].second;
if(leap * leap >= x + y) {
dic.add_double(l + n * m, r, inf);
dic.add_double(r + n * m, l, inf);
}
}
}
for(int i = 0; i < pill.size(); i++) {
int x = pill[i].first, y = pill[i].second;
int index = (x - 1) * m + y;
dic.add_double(index, index + n * m, cost[x][y]);
if(x - leap <= 0 || y - leap <= 0 || x + leap > n || y + leap > m)
dic.add_double(index + n * m, ed, cost[x][y]);
}
int ans = dic.MaxFlow();
cout << "Case #" << kase++ << ": ";
if(!(cnt - ans)) cout << "no";
else cout << cnt - ans;
if(cnt - ans < 2) cout << " lizard was left behind.\n";
else cout << " lizards were left behind.\n";
}
return 0;
}