[Node JS] Node JS 要点

本文深入探讨了Node.js的核心技术,包括其与PHP等其他服务端语言的区别、异步I/O的特点、模块加载方式、全局变量的使用、进程管理、事件驱动机制及闭包等高级特性。

1. no http server.

PHP->User  :   PHP interpretor - > HTTP interpretor(Apache, IIS, Nginx) -> browser - > user

Node JS -> User :  Node JS -> browser - > user


2. Asynchronous I/O

Synchronous I/O  - multithread to improve performance

Aynchronous I/O  - no need to concern about it, because node just forward I/O request to system, and continue to process.

 

3. exports.SomeFunction = SomeFunction  vs    module.exports = SomeFunction

    require('someFilePath')    vs    require ('someFunction')


4. npm -> node; pip -> python; gem -> ruby; pear -> PHP; CPAN -> perl; apt-get -> debian/ubuntu; yum -> fedora/rhel/cent os; homebrew -> mac os x


5. npm install someModule -> local install module to subdir(node_modules)  of current dir. we can require the module directly. but it is not set for global use, and bin is not in PATH.


   npm install -g someModule -> global install mobule to /usr/local/lib/node_modules, and bin is linked to /usr/local/bin, here, /usr/local/bin exist in PATH by default. but we can`t require this modules directly. we need npm link


6. npm link someModule in project folder(not support by windows)

    ./node_modules/someModules - > /usr/local/lib/node_modules/someModule, link the global modules as local use.

    npm link can also link local module as global use, we should run npm link in package folder(which include package.json)


7. server side, node --debug-brk debug.js (default port is 5858, we can change this by --debug=xxxx)

 client side,  node debug 192.168.59.32:5858

n,c,s,o,sb(),list(5), bt, watch(expr)


8. global variable and global object.

   in JS, 'window' is the global object.

   in Node JS, 'global' is the global object.

   global object is the holder of global variables.

   Global Variables:

   a. the most outside variables

   b. variable in 'global' (for example 'process')

   c. implicit defined variables(assign value without define)(we can use 'var' to avoid global)

9. process

    process.argv

    process.stdin.resume(), and set a callback to get user input.

    process.stdin.on('data', function(data){...})

    process.netxTick(cb)

    process.platform

    process.pid

    process.execPath

    process.memoryUsage


10. util.inherits(sub, base)

     ctor override?

     Base.prototype.somefunction = function will be inherited. other in the body won`t. and even the prototype can`t be displayed as console.log(subobj), but we can invoke it.


11. util.inspect(obj), util.inspect(obj, true), util.isArray(), util.isDate(), util.isError(), util.format(), util.debug().


********************************************************

12. event drive. events.


      events.EventEmitter

      emitter.on('eventStringAsType', function(arg1, arg2){...})

      emitter.emit(''eventStringAsType', arg1, arg2')

      emitter.once(event, listener), register 1 time cb

      emitter.remove(event, listener)

      emitter.removeAllListeners([event])

      emitter.emit('error'), trigger bt


13. for vs forEach, (function(i){xxx(i)...};)(i)


14. scope

brace (for, if , etc...) is not a scope identifier.

       variables  are searched from inside to outside of a function. And it is a 'static scope', not a 'runtime scope'


15. closure, return a embedded function and its env(variables), used in embedded cb, or private variable


16. prototype

      declare class belongings(like static in c++) as a prototype, or all the variables and functions in ctor will be copied when create a new instance.

 

17. call (pass variable separately), apply(pass variables in array), bind (change 'this' permanently)



(Kriging_NSGA2)克里金模型结合多目标遗传算法求最优因变量及对应的最佳自变量组合研究(Matlab代码实现)内容概要:本文介绍了克里金模型(Kriging)与多目标遗传算法NSGA-II相结合的方法,用于求解最优因变量及其对应的最佳自变量组合,并提供了完整的Matlab代码实现。该方法首先利用克里金模型构建高精度的代理模型,逼近复杂的非线性系统响应,减少计算成本;随后结合NSGA-II算法进行多目标优化,搜索帕累托前沿解集,从而获得多个最优折衷方案。文中详细阐述了代理模型构建、算法集成流程及参数设置,适用于工程设计、参数反演等复杂优化问题。此外,文档还展示了该方法在SCI一区论文中的复现应用,体现了其科学性与实用性。; 适合人群:具备一定Matlab编程基础,熟悉优化算法和数值建模的研究生、科研人员及工程技术人员,尤其适合从事仿真优化、实验设计、代理模型研究的相关领域工作者。; 使用场景及目标:①解决高计算成本的多目标优化问题,通过代理模型降低仿真次数;②在无法解析求导或函数高度非线性的情况下寻找最优变量组合;③复现SCI高水平论文中的优化方法,提升科研可信度与效率;④应用于工程设计、能源系统调度、智能制造等需参数优化的实际场景。; 阅读建议:建议读者结合提供的Matlab代码逐段理解算法实现过程,重点关注克里金模型的构建步骤与NSGA-II的集成方式,建议自行调整测试函数或实际案例验证算法性能,并配合YALMIP等工具包扩展优化求解能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值