[转载]经典算法系列之(一) - BitMap

本文介绍如何使用BitMap技术实现高效的大规模数据存储与查询。通过将每个整数映射到BitMap的一个比特位上,极大地减少了内存占用。文章详细解释了BitMap的基本原理,并提供了具体的Java实现代码。

作者:陈焕生
链接:https://www.jianshu.com/p/6082a2f7df8e
來源:简书
简书著作权归作者所有,任何形式的转载都请联系作者获得授权并注明出处。

一、问题引入

BitMap从字面的意思,很多人认为是位图,其实准确的来说,翻译成基于位的映射,怎么理解呢?

举一个例子,有一个无序有界int数组{1,2,5,7},初步估计占用内存44=16字节,这倒是没什么奇怪的,但是假如有10亿个这样的数呢,10亿4/(102410241024)=3.72G左右。如果这样的一个大的数据做查找和排序,那估计内存也崩溃了,有人说,这些数据可以不用一次性加载,那就是要存盘了,存盘必然消耗IO。我们提倡的是高性能,这个方案直接不考虑。

二、问题分析

如果用BitMap思想来解决的话,就好很多,那么BitMap是怎么解决的啊,如下:

一个byte是占8个bit,如果每一个bit的值就是有或者没有,也就是二进制的0或者1,如果用bit的位置代表数组值有还是没有,那么0代表该数值没有出现过,1代表该数组值出现过。不也能描述数据了吗?具体如下图:
这里写图片描述

即原本需要用32位表示一个数,而现在只需要1位就可以表示一个数。内存不足也不需要担心了

是不是很神奇,那么现在假如10亿的数据所需的空间就是3.72G/32了吧,一个占用32bit的数据现在只占用了1bit,节省了不少的空间,排序就更不用说了,一切显得那么顺利。这样的数据之间没有关联性,要是读取的,你可以用多线程的方式去读取。时间复杂度方面也是O(Max/n),其中Max为byte[]数组的大小,n为线程大小。

三、应用与代码

如果BitMap仅仅是这个特点,我觉得还不是它的优雅的地方,接下来继续欣赏它的魅力所在。下面的计算思想其实就是针对bit的逻辑运算得到,类似这种逻辑运算的应用场景可以用于权限计算之中。

再看代码之前,我们先搞清楚一个问题,一个数怎么快速定位它的索引号,也就是说搞清楚byte[index]的index是多少,position是哪一位。举个例子吧,例如add(14)。14已经超出byte[0]的映射范围,在byte[1]范围之类。那么怎么快速定位它的索引呢。如果找到它的索引号,又怎么定位它的位置呢。Index(N)代表N的索引号,Position(N)代表N的所在的位置号。

Index(N) = N/8 = N >> 3;

Position(N) = N%8 = N & 0x07;

(1) add(int num)

你要向bitmap里add数据该怎么办呢,不用担心,很简单,也很神奇。上面已经分析了,add的目的是为了将所在的位置从0变成1.其他位置不变.

这里写图片描述

实例代码:

public void add(int num){
        // num/8得到byte[]的index
        int arrayIndex = num >> 3; 

        // num%8得到在byte[index]的位置
        int position = num & 0x07; 

        //将1左移position后,那个位置自然就是1,然后和以前的数据做|,这样,那个位置就替换成1了。
        bits[arrayIndex] |= 1 << position; 
    }

(2) clear(int num)

对1进行左移,然后取反,最后与byte[index]作与操作。

这里写图片描述

public void clear(int num){ 
    // num/8得到byte[]的index 
    int arrayIndex = num >> 3; 

    // num%8得到在byte[index]的位置 
     int position = num & 0x07; 

    //将1左移position后,那个位置自然就是1,然后对其取反,再与当前值做&,即可清除当前的位置了. 
    bits[arrayIndex] &= ~(1 << position); 
}

(4) contain(int num)
这里写图片描述

实例代码:

 public boolean contain(int num){
        // num/8得到byte[]的index
        int arrayIndex = num >> 3; 

        // num%8得到在byte[index]的位置
        int position = num & 0x07; 

        //将1左移position后,那个位置自然就是1,然后和以前的数据做&,判断是否为0即可
        return (bits[arrayIndex] & (1 << position)) !=0; 
    }

四、全部代码如下

package com.chs.alg.bitmap;

public class BitMap {
    //保存数据的
    private byte[] bits;

    //能够存储多少数据
    private int capacity;


    public BitMap(int capacity){
        this.capacity = capacity;

        //1bit能存储8个数据,那么capacity数据需要多少个bit呢,capacity/8+1,右移3位相当于除以8
        bits = new byte[(capacity >>3 )+1];
    }

    public void add(int num){
        // num/8得到byte[]的index
        int arrayIndex = num >> 3; 

        // num%8得到在byte[index]的位置
        int position = num & 0x07; 

        //将1左移position后,那个位置自然就是1,然后和以前的数据做|,这样,那个位置就替换成1了。
        bits[arrayIndex] |= 1 << position; 
    }

    public boolean contain(int num){
        // num/8得到byte[]的index
        int arrayIndex = num >> 3; 

        // num%8得到在byte[index]的位置
        int position = num & 0x07; 

        //将1左移position后,那个位置自然就是1,然后和以前的数据做&,判断是否为0即可
        return (bits[arrayIndex] & (1 << position)) !=0; 
    }

    public void clear(int num){
        // num/8得到byte[]的index
        int arrayIndex = num >> 3; 

        // num%8得到在byte[index]的位置
        int position = num & 0x07; 

        //将1左移position后,那个位置自然就是1,然后对取反,再与当前值做&,即可清除当前的位置了.
        bits[arrayIndex] &= ~(1 << position); 

    }

    public static void main(String[] args) {
        BitMap bitmap = new BitMap(100);
        bitmap.add(7);
        System.out.println("插入7成功");

        boolean isexsit = bitmap.contain(7);
        System.out.println("7是否存在:"+isexsit);

        bitmap.clear(7);
        isexsit = bitmap.contain(7);
        System.out.println("7是否存在:"+isexsit);
    }
}
【完美复现】面向配电网韧性提升的移动储能预布局与动态调度策略【IEEE33节点】(Matlab代码实现)内容概要:本文介绍了基于IEEE33节点的配电网韧性提升方法,重点研究了移动储能系统的预布局与动态调度策略。通过Matlab代码实现,提出了种结合预配置和动态调度的两阶段优化模型,旨在应对电网故障或极端事件时快速恢复供电能力。文中采用了多种智能优化算法(如PSO、MPSO、TACPSO、SOA、GA等)进行对比分析,验证所提策略的有效性和优越性。研究不仅关注移动储能单元的初始部署位置,还深入探讨其在故障发生后的动态路径规划与电力支援过程,从而全面提升配电网的韧性水平。; 适合人群:具备电力系统基础知识和Matlab编程能力的研究生、科研人员及从事智能电网、能源系统优化等相关领域的工程技术人员。; 使用场景及目标:①用于科研复现,特别是IEEE顶刊或SCI区论文中关于配电网韧性、应急电源调度的研究;②支撑电力系统在灾害或故障条件下的恢复力优化设计,提升实际电网应对突发事件的能力;③为移动储能系统在智能配电网中的应用提供理论依据和技术支持。; 阅读建议:建议读者结合提供的Matlab代码逐模块分析,重点关注目标函数建模、约束条件设置以及智能算法的实现细节。同时推荐参考文中提及的MPS预配置与动态调度上下两部分,系统掌握完整的技术路线,可通过替换不同算法或测试系统进步拓展研究。
先看效果: https://pan.quark.cn/s/3756295eddc9 在C#软件开发过程中,DateTimePicker组件被视为种常见且关键的构成部分,它为用户提供了图形化的途径来选取日期与时间。 此类控件多应用于需要用户输入日期或时间数据的场景,例如日程管理、订单管理或时间记录等情境。 针对这主题,我们将细致研究DateTimePicker的操作方法、具备的功能以及相关的C#编程理念。 DateTimePicker控件是由.NET Framework所支持的种界面组件,适用于在Windows Forms应用程序中部署。 在构建阶段,程序员能够通过调整属性来设定其视觉形态及运作模式,诸如设定日期的显示格式、是否展现时间选项、预设的初始值等。 在执行阶段,用户能够通过点击日历图标的下拉列表来选定日期,或是在文本区域直接键入日期信息,随后按下Tab键或回车键以确认所选定的内容。 在C#语言中,DateTime结构是处理日期与时间数据的核心,而DateTimePicker控件的值则表现为DateTime类型的实例。 用户能够借助`Value`属性来读取或设定用户所选择的日期与时间。 例如,以下代码片段展示了如何为DateTimePicker设定初始的日期值:```csharpDateTimePicker dateTimePicker = new DateTimePicker();dateTimePicker.Value = DateTime.Now;```再者,DateTimePicker控件还内置了事件响应机制,比如`ValueChanged`事件,当用户修改日期或时间时会自动激活。 开发者可以注册该事件以执行特定的功能,例如进行输入验证或更新关联的数据:``...
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值