首先在安卓中对于图片的高斯模糊效果处理主要采用了RenderScript和fastBlur两种技术。
1,采用RenderScript
private static Bitmap renderScriptBlur(Context context, Bitmap source, int radius){
Bitmap inputBmp = source;
//1
RenderScript renderScript = RenderScript.create(context);
//2
final Allocation input = Allocation.createFromBitmap(renderScript,inputBmp);
final Allocation output = Allocation.createTyped(renderScript,input.getType());
//3
ScriptIntrinsicBlur scriptIntrinsicBlur = ScriptIntrinsicBlur.create(renderScript, Element.U8_4(renderScript));
//4
scriptIntrinsicBlur.setInput(input);
//5
scriptIntrinsicBlur.setRadius(radius);
//6
scriptIntrinsicBlur.forEach(output);
//7
output.copyTo(inputBmp);
//8
renderScript.destroy();
return inputBmp;
}
此方法是在c/c++层做处理,因此性能比较好,但是有个局限就是ScriptintrisicBlur类在API 17以上才能使用,要向下兼容的话需要加入support.v8.renderscript兼容包,兼容到API 9 ,并且在app的build.gradle中添加如下两条renderScript的信息
defaultConfig {
minSdkVersion 9
targetSdkVersion 19
// 使用support.v8.renderscript
renderscriptTargetApi 18
renderscriptSupportModeEnabled true
}
缺点:引入兼容包增大了apk的体积
ps:此类方式下RenderScript效率仍然是达不到16ms/桢,还有进一步的空间
优化方案: 采用了先缩小图片,再去模糊的方案,最后再放大图片
更改后的代码(注意此方法返回的bitmap时缩小的图片):
private static Bitmap renderScriptBlur(Context context, Bitmap source, int radius,float scale){
//1
int width = Math.round(source.getWidth * scale);
int height = Math.round(source.getHeight() * scale);
Bitmap inputBmp = Bitmap.createScaledBitmap(source,width,height,false);
//2
RenderScript renderScript = RenderScript.create(context);
//3
final Allocation input = Allocation.createFromBitmap(renderScript,inputBmp);
final Allocation output = Allocation.createTyped(renderScript,input.getType());
//4
ScriptIntrinsicBlur scriptIntrinsicBlur = ScriptIntrinsicBlur.create(renderScript, Element.U8_4(renderScript));
//5
scriptIntrinsicBlur.setInput(input);
//6
scriptIntrinsicBlur.setRadius(radius);
//7
scriptIntrinsicBlur.forEach(output);
//8
output.copyTo(inputBmp);
//9
renderScript.destroy();
return inputBmp;
}
2,fastBlur
直接在Java层做处理,对每个像素点应用高斯模糊计算,并合成最终的一张bitmap
缺点:效率慢,速度比RenderScript慢了近十倍,会有导致OOM的可能
优化方案:采用了先缩小图片,再去模糊的方案,最后再放大图片
整个代码(注意此方法返回的bitmap时缩小的图片):
private static Bitmap fastBlur(Bitmap sentBitmap, float scale, int radius) {
int width = Math.round((float)sentBitmap.getWidth() * scale);
int height = Math.round((float)sentBitmap.getHeight() * scale);
sentBitmap = Bitmap.createScaledBitmap(sentBitmap, width, height, false);
Bitmap bitmap = sentBitmap.copy(sentBitmap.getConfig(), true);
if(radius < 1) {
return null;
} else {
int w = bitmap.getWidth();
int h = bitmap.getHeight();
int[] pix = new int[w * h];
Log.e("pix", w + " " + h + " " + pix.length);
bitmap.getPixels(pix, 0, w, 0, 0, w, h);
int wm = w - 1;
int hm = h - 1;
int wh = w * h;
int div = radius + radius + 1;
int[] r = new int[wh];
int[] g = new int[wh];
int[] b = new int[wh];
int[] vmin = new int[Math.max(w, h)];
int divsum = div + 1 >> 1;
divsum *= divsum;
int[] dv = new int[256 * divsum];
int i;
for(i = 0; i < 256 * divsum; ++i) {
dv[i] = i / divsum;
}
int yi = 0;
int yw = 0;
int[][] stack = new int[div][3];
int r1 = radius + 1;
int rsum;
int gsum;
int bsum;
int x;
int y;
int p;
int stackpointer;
int stackstart;
int[] sir;
int rbs;
int routsum;
int goutsum;
int boutsum;
int rinsum;
int ginsum;
int binsum;
for(y = 0; y < h; ++y) {
bsum = 0;
gsum = 0;
rsum = 0;
boutsum = 0;
goutsum = 0;
routsum = 0;
binsum = 0;
ginsum = 0;
rinsum = 0;
for(i = -radius; i <= radius; ++i) {
p = pix[yi + Math.min(wm, Math.max(i, 0))];
sir = stack[i + radius];
sir[0] = (p & 16711680) >> 16;
sir[1] = (p & '\uff00') >> 8;
sir[2] = p & 255;
rbs = r1 - Math.abs(i);
rsum += sir[0] * rbs;
gsum += sir[1] * rbs;
bsum += sir[2] * rbs;
if(i > 0) {
rinsum += sir[0];
ginsum += sir[1];
binsum += sir[2];
} else {
routsum += sir[0];
goutsum += sir[1];
boutsum += sir[2];
}
}
stackpointer = radius;
for(x = 0; x < w; ++x) {
r[yi] = dv[rsum];
g[yi] = dv[gsum];
b[yi] = dv[bsum];
rsum -= routsum;
gsum -= goutsum;
bsum -= boutsum;
stackstart = stackpointer - radius + div;
sir = stack[stackstart % div];
routsum -= sir[0];
goutsum -= sir[1];
boutsum -= sir[2];
if(y == 0) {
vmin[x] = Math.min(x + radius + 1, wm);
}
p = pix[yw + vmin[x]];
sir[0] = (p & 16711680) >> 16;
sir[1] = (p & '\uff00') >> 8;
sir[2] = p & 255;
rinsum += sir[0];
ginsum += sir[1];
binsum += sir[2];
rsum += rinsum;
gsum += ginsum;
bsum += binsum;
stackpointer = (stackpointer + 1) % div;
sir = stack[stackpointer % div];
routsum += sir[0];
goutsum += sir[1];
boutsum += sir[2];
rinsum -= sir[0];
ginsum -= sir[1];
binsum -= sir[2];
++yi;
}
yw += w;
}
for(x = 0; x < w; ++x) {
bsum = 0;
gsum = 0;
rsum = 0;
boutsum = 0;
goutsum = 0;
routsum = 0;
binsum = 0;
ginsum = 0;
rinsum = 0;
int yp = -radius * w;
for(i = -radius; i <= radius; ++i) {
yi = Math.max(0, yp) + x;
sir = stack[i + radius];
sir[0] = r[yi];
sir[1] = g[yi];
sir[2] = b[yi];
rbs = r1 - Math.abs(i);
rsum += r[yi] * rbs;
gsum += g[yi] * rbs;
bsum += b[yi] * rbs;
if(i > 0) {
rinsum += sir[0];
ginsum += sir[1];
binsum += sir[2];
} else {
routsum += sir[0];
goutsum += sir[1];
boutsum += sir[2];
}
if(i < hm) {
yp += w;
}
}
yi = x;
stackpointer = radius;
for(y = 0; y < h; ++y) {
pix[yi] = -16777216 & pix[yi] | dv[rsum] << 16 | dv[gsum] << 8 | dv[bsum];
rsum -= routsum;
gsum -= goutsum;
bsum -= boutsum;
stackstart = stackpointer - radius + div;
sir = stack[stackstart % div];
routsum -= sir[0];
goutsum -= sir[1];
boutsum -= sir[2];
if(x == 0) {
vmin[y] = Math.min(y + r1, hm) * w;
}
p = x + vmin[y];
sir[0] = r[p];
sir[1] = g[p];
sir[2] = b[p];
rinsum += sir[0];
ginsum += sir[1];
binsum += sir[2];
rsum += rinsum;
gsum += ginsum;
bsum += binsum;
stackpointer = (stackpointer + 1) % div;
sir = stack[stackpointer];
routsum += sir[0];
goutsum += sir[1];
boutsum += sir[2];
rinsum -= sir[0];
ginsum -= sir[1];
binsum -= sir[2];
yi += w;
}
}
Log.e("pix", w + " " + h + " " + pix.length);
bitmap.setPixels(pix, 0, w, 0, 0, w, h);
return bitmap;
}
}
github地址:https://github.com/MelvinCen/ImageBlur
本文参考学习于简书,原作者写的更加详细一些:https://www.jianshu.com/p/02da487a2f43