Spark 官方文档(2)——集群模式
Spark版本:1.6.2 简介:本文档简短的介绍了spark如何在集群中运行,便于理解spark相关组件。可以通过阅读应用提交文档了解如何在集群中提交应用。
组件
spark应用程序通过主程序的SparkContext对象进行协调,在集群上通过一系列独立的处理流程运行。
为了便于迁移,SparkContext可以支持多种类型的集群管理器(spark standalone、Yarn、Mesos)。当与集群管理器创建连接后,spark在集群的节点上面申请executors,用于处理应用程序中的计算任务和数据存储。然后executors将一个用的代码发送到各个executors,最后SparkContext发送tasks到各个executor执行。
关于spark架构有一些内容需要指出:
- 每个应用都有自己的executor,他们会在应用程序的整个生命周期内一直存活,这样有利于应用间调度和executor的隔离。但这样也就意味着不同应用之间只能通过外部存储系统进行沟通。
- Spark对于底层的集群管理系统并不知晓,他们能在不同集群上进行资源申请,并提供一致的接口进行通信和计算处理。
- 在应用的整个生命周期内,Driver程序需要监听和接受executors的信息,因此driver程序对于worker节点来说要可以通过网络寻址定位的。
- 由于Driver程序调度集群上面的任务,因而driver最好与worker在同一个网段运行,若远程执行最好开通RPC。