Description
Farmer John has been informed of the location of a fugitive cow and wants to catch her immediately. He starts at a point N (0 ≤ N ≤ 100,000) on a number line and the cow is at a point K (0 ≤ K ≤ 100,000) on the same number line. Farmer John has two modes of transportation: walking and teleporting.
* Walking: FJ can move from any point X to the points X - 1 or X + 1 in a single minute
* Teleporting: FJ can move from any point X to the point 2 × X in a single minute.
If the cow, unaware of its pursuit, does not move at all, how long does it take for Farmer John to retrieve it?
Input
Output
Sample Input
5 17
Sample Output
4
Hint
Source
为求解最短路径,用BFS效果更好。
#include <iostream>
#include <cstdio>
#include <map>
#include <set>
#include <vector>
#include <queue>
#include <stack>
#include <cmath>
#include <algorithm>
#include <cstring>
#include <string>
using namespace std;
#define INF 0x3f3f3f3f
const int maxn=100000;
typedef long long LL;
int n,k;
bool v[maxn+5];
struct step{
int x;
int steps;
step(int xx,int s):x(xx),steps(s){}
};
queue<step> q;
int main()
{
while(~scanf("%d%d",&n,&k)){
memset(v,false,sizeof(v));
q.push(step(n,0));
v[n]=true;
while(!q.empty()){
step s=q.front();
if(s.x==k){
printf("%d\n",s.steps);
return 0;
}
if(s.x-1>=0&&!v[s.x-1]){
q.push(step(s.x-1,s.steps+1));
v[s.x-1]=true;
}
if(s.x+1<=maxn&&!v[s.x+1]){
q.push(step(s.x+1,s.steps+1));
v[s.x+1]=true;
}
if(2*s.x<=maxn&&!v[2*s.x]){
q.push(step(2*s.x,s.steps+1));
v[2*s.x]=true;
}
q.pop();
}
}
return 0;
}

在本篇中,我们探讨了Farmer John如何利用步行与瞬移两种方式,在最短时间内找到静止不动的逃逸奶牛。通过使用广度优先搜索(BFS),我们能够有效地计算出从起点到目标点所需的最少时间。
513

被折叠的 条评论
为什么被折叠?



