MegEngine 使用小技巧:如何解读 MegCC 编译模型几个阶段 Pass 的作用

本文详细介绍了MegCC,一个轻量级的深度学习模型编译器,其主要Pass包括MGBToKernelPass、MGBFuseKernelPass、MemoryForwardingPass、KernelMaterializationPass和StaticMemoryPlanningPass,分别涉及图优化、算子融合、内存规划等。通过这些Pass,MegCC实现了模型的高效编译和优化,生成高性能的Kernel代码。

MegCC 是一个真真实实的深度学习模型编译器,具备极其轻量的 Runtime 二进制体积,高性能,方便移植,极低内存使用以及快启动等核心特点。用户可在 MLIR 上进行计算图优化,内存规划,最后通过预先写好的 code 模版进行代码生成。

MegCC 中主要的 Pass

  • MGBToKernelPass:这个 Pass 主要将 MGB IR 转换为 Abstract Kernel IR,转换过程中主要完成几件事情:
    • 将 MGB IR 中的所有输入输出 Tensor 类型转换为 Buffer 类型。
    • 将 MGB IR 中的所有枚举参数转换为对应的字符,这样 Abstract Kernel IR 就可以完全和 MegEngine 解耦。
    • 将一些内存搬运相关的 Opr 全部转换为 Relayout,如:Concat,SetSubtensor 等 Opr(node-level optimizations)。
    • 将判断 Opr 是静态 shape 还是动态 shape,动态 shape 就是输入 tensor 的 shape 需要依赖输入的值才能计算出来的,如:输出一个 tensor 中所有大于 1 的数。如果是静态 shape 直接转换到 Abstract Kernel IR,如果是动态 shape 直接转换到 Kernel IR 的 Instruction 中。
  • MGBFuseKernelPass:应用在 MGB IR 上,基于 mlir 的模板匹配的方法尽可能的完成 kernel 的融合,比如连续两个 typecvt 合并成为一个 typecvt 等(block-level optimizations,算子融合)。
  • MemoryForwardingPass:将遍历 Abstract Kernel IR 所有可能不用计算,直接 share 输入内存的 Opr,如果这些 Opr 确实不用计算,则直接 forward memory,如果这些 Opr 需要进行内存搬运,则会用 Relayout Opr 替换原来的 Opr(node-level optimizations)。KernelMaterializationPass:将所有 Abstract Kernel IR 都装载上真正 Kernel code 并转化为 KernelCall,然后添加对应的 KernelDef。KernelCall 和 KernelDef 之间通过 symbol 进行匹配。
  • StaticMemoryPlanningPass:将所有静态 shape 的 memref 进行内存规划,内存规划算法使用改进的 MegEngine 的内存规划算法–PushDown 算法,能够极大程度的压缩运行时内存使用量。同时将 mlir 的 memref.Alloc 替换为 Kernel IR 的 MemPlan,MemPlan 中主要记录了内存规划的一整块 memref 以及该 Tensor 在规划的内存中的偏移量(dataflow-level optimizations,静态内存规划)。

上面的 Pass 就完成模型的图优化、内存规划以及 Kernel 生成,上文提到的后端优化即在 Kernel 生成阶段体现,目前 MegCC 主要使用人工优化的 Kernel 模版。最终可以根据 Runtime 中定义的模型格式 dump 编译之后的模型,以及生成计算模型所需的 Kernel 文件。 下面以一个简单的模型为例,使用 MegCC 的辅助工具(下载 Release 包) mgb-imp

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值