提取网页内容存储为word的方法

本文介绍了一种实用的方法,用于将受保护的网页内容转换为Word文档格式,包括使用html2word技术实现转换的过程及注意事项。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

应用需求

word是我们平常办公最常用的文字处理软件之一了,但是我们第一手阅读的材料却并不通常是用word来写就的(非doc格式),可能是txt文本,pdf文件,更多的可能就是网页内容了。我们希望有一种轻快便捷的方案可以很容易地将网页内容导出成doc格式的文件,这样我们就可以用word来处理它们了。

今天老师让我办件事,是登录进一个问卷调查网页,将所有问卷内容提取出来,整理成word文件发给她。我在登进问卷(.aspx格式)后发现,网页内容是受保护的,不可以直接复制内容(点击右键没有任何响应)。

于是乎,我就面临了第一个考验,如何获取网页内容?

pdf2word

我的第一种方法是利用浏览器的打印功能,将网页保存为pdf。保存了4个pdf文件(因为问卷有4页)之后,我首先利用在线文档转换工具Smallpdf将4个pdf文件合二为一,然后在线转为word。

然而令我大失所望的是,转化成的word文件有太多太多的格式、字体问题,别说是编辑重用了,连阅读都不堪其用。我试了许多其他的pdf转word在线平台,效果都是半斤八两,不堪入目。

html2word

既然pdf不是一个明智的选择,我开始思考其他方案。我发现在浏览器中还有这样一个功能:将页面存储为html格式。以谷歌为例,在功能->更多工具中选中另存为html,就可以将当前网页的html格式连同一个链接文件(如果存在)一起下载到本地。

接下来的操作异常简单:

  • 选择下载好的html文件,右键点击“打开方式”选项,用Word打开;
  • 打开后可以看到文件格式与网页中显示基本一致,选择“文件另存为”,存成以“docx”为后缀的文件;
  • 如果html中有引用文件包中的链接,需要对其进行编辑(我遇到的网页无此情形);
  • 可尝试删除与html文件一起被下载的文件包,以免每次打开html转成的word文件都需要授权。

这样一来,一个可以分享给他人的word文件就完成了。
为了方便以后的工作,以及分享给有需要的人,暂且把这些操作记录下来。
【其实我是个科研工作者~~~】

参考内容:
http://code.makery.ch/library/convert-web-page-to-word/

<think>好的,我现在要处理用户关于Android 12中RKNN开发配置和使用教程的问题。首先,我需要回顾用户提供的引用内容,看看是否有相关的信息。 用户提供了三个引用。引用1提到了RKNN Model Zoo和RKNN Toolkit2的环境配置,包括安装Miniconda3。引用2是关于系统镜像下载,特别是Ubuntu 22.04版本和导出ONNX模型。引用3讨论了RV1808/1126使用RKNN作为MediaPipe推理后端的步骤,包括配置参数如use_rga、use_mmap和data_type的设置,以及反量化的处理。 用户的问题集中在Android 12上,所以需要将引用中的信息与Android系统关联起来。引用3提到了MediaPipe和RKNN的集,这可能适用于Android开发,但需要确认是否支持Android 12。此外,RKNN Toolkit2的环境配置可能在不同平台上有所不同,用户可能需要针对Android进行调整。 接下来,我需要考虑Android开发中RKNN的一般步骤,比如环境准备、模型转换、集到Android应用、配置参数和性能优化。结合引用中的信息,模型转换部分可以参考引用2提到的导出ONNX模型,然后使用RKNN Toolkit转换为RKNN格式。引用3中的配置参数(如use_rga、use_mmap、data_type)可能在Android中同样适用,但需要查阅相关文档确认。 可能还需要指导用户如何将RKNN库集到Android项目中,比如添加依赖项或NDK配置。此外,性能优化方面,引用3提到的反量化处理可能需要特别注意,尤其是在Android设备上的实现。 最后,确保回答结构清晰,分步骤说明,并引用提供的资料。需要验证引用中的信息是否适用于Android 12,例如系统镜像是否支持,或者是否有特定版本的要求。如果某些步骤在引用中没有明确说明,可能需要提示用户参考官方文档或社区资源。</think>### Android 12 RKNN 开发配置与使用教程 #### 1. **环境准备** - **系统镜像与工具链**: 根据引用[2],建议使用Ubuntu 22.04作为开发环境,并下载Orange Pi 5 Pro等支持RKNN的硬件镜像。对于Android 12开发,需确保RKNN Toolkit2适配Android NDK版本(推荐NDK 21+)[^2]。 - **安装RKNN Toolkit2**: 参考引用[1],通过Miniconda3配置Python环境(建议Python 3.8),并安装RKNN Toolkit2以支持模型转换与推理。命令示例: ```bash pip install rknn_toolkit2 ``` #### 2. **模型转换(ONNX转RKNN)** - **导出ONNX模型**: 使用PyTorch或TensorFlow等框架导出模型为ONNX格式(引用[2])。 - **转换为RKNN格式**: 编写RKNN配置文件(`config.yml`),指定输入尺寸、量化方式等参数。示例代码: ```python from rknn.api import RKNN rknn = RKNN() rknn.config(target_platform='rk3568', mean_values=[[127.5]], std_values=[[127.5]]) rknn.load_onnx(model="model.onnx") rknn.build(do_quantization=True, dataset="dataset.txt") rknn.export_rknn("model.rknn") ``` #### 3. **Android项目集** - **添加RKNN库依赖**: 将编译好的RKNN动态库(`librknnrt.so`)和模型文件(`model.rknn`)放入Android项目的`jniLibs`目录。 - **JNI接口开发**: 通过JNI调用RKNN的C/C++ API实现推理。关键配置参考引用[3]: ```cpp #include <rknn/rknn_runtime.h> rknn_context ctx; int ret = rknn_init(&ctx, model_path, 0, 0, nullptr); ret = rknn_inputs_set(ctx, input_num, input_attrs); ret = rknn_run(ctx, nullptr); ret = rknn_outputs_get(ctx, output_num, output_attrs, nullptr); ``` #### 4. **关键配置参数** - **use_rga与use_mmap**: 根据引用[3],若Android设备不支持硬件加速(如RGA),需将`use_rga`和`use_mmap`设为`false`。 - **数据量化类型**: `data_type`可选`uint8`或`fp32`。若选`uint8`,需手动实现反量化;若选`fp32`,RKNN会自动处理[^3]。 #### 5. **性能优化** - **多线程推理**: 利用Android的`ThreadPoolExecutor`并行处理输入数据。 - **内优化**: 启用`use_mmap`(若支持)减少内拷贝开销,或通过零拷贝技术直接操作物理内。 #### 6. **调试与验证** - **日志输出**: 启用RKNN的调试模式(`RKNN_LOG_LEVEL=DEBUG`)查看详细运行信息。 - **性能分析**: 使用`rknn.query(RKNN_QUERY_PERF_DETAIL)`获取各层耗时,针对性优化模型结构。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值