NOIP 2017 模拟
10 20
T1 :
题目:
——正解思路:
对 Ci 做个前缀合,显然从前缀和最小的地方开始买就能买完所有刮刮卡。
真是一道NOIP良心签到题。
——我的乱搞:
**没有乱搞,同正解。
tips:
难得碰到良心题。。。。
好好珍惜,说不定那天做T1脑子又崩了呢。。。
正解:
#include <cstdio>
#include <cctype>
int n, __ans, __num;
int a[2000010], b[2000010];
inline int read () {
int i = 0;
char c = getchar();
while (!isdigit(c)) c = getchar();
while (isdigit(c)) i = (i << 3) + (i << 1) + c - 48, c = getchar();
return i;
}
int main () {
n = read();
for (int i = 1; i <= n; i++) b[i] = b[i + n] = read();
for (int i = 1; i <= n; i++) a[i] = a[i + n] = read();
for (int i = 1; i <= n; i++) {
int __sum = 0, rei = i, fen = 0;
for (int j = 1; j <= n; i++, j++) {
__sum += b[i] - a[i];
fen += b[i];
if (__sum < 0) break;
}
if (fen > __num) {
__num = fen;
__ans = rei - 1;
}
}
printf ("%d\n", __ans);
return 0;
}
题目:
——正解思路:
dp [ i ][ j ][ k ] 表示扫描到第一列 i 位置与第二列 j 位置且选取 k 个矩阵时的答案。
三种转移:第一列取一段,第二列取一段,去一个宽度为二的矩阵。
——我的乱搞:
30分暴力 + 10 分玄学 + 60 分WA
tips:
深知是 dp 题却不知如何 dp 的痛苦。。。。
好好学习,天天玄学。
正解 :
var
n, m, k, i, j, ans : longint;
s : array [0..110, 0..3] of longint;
f1 : array [0..110, 0..110] of longint;
f2 : array [0..110, 0..110, 0..110] of longint;
function max (a, b : longint) : longint;
begin
if a > b then exit (a)
else exit (b);
end;
procedure work1 ();
var
i, j, t : longint;
begin
fillchar (f1, sizeof (f1), 128);
for i := 0 to n do f1[i, 0] := 0;
for i := 1 to n do
for j := 1 to k do begin
f1[i, j] := f1[i - 1, j];
for t := 0 to i - 1 do
f1[i, j] := max (f1[i, j], f1[t, j - 1] + s[i, 1] - s[t, 1]);
end;
ans := f1[n, k];
end;
procedure work2 ();
var
i, j, t, p : longint;
begin
fillchar (f2, sizeof (f2), 128);
for i := 0 to n do
for j := 0 to n do
f2[i, j, 0] := 0;
for i := 1 to n do
for j := 1 to n do
for t := 1 to k do begin
f2[i, j, t] := max (f2[i - 1, j, t], f2[i, j - 1, t]);
for p := 0 to i - 1 do
f2[i, j, t] := max (f2[i, j, t], f2[p, j, t - 1] + s[i, 1] - s[p, 1]);
for p := 0 to j - 1 do
f2[i, j, t] := max (f2[i, j, t], f2[i, p, t - 1] + s[j, 2] - s[p, 2]);
if i = j then
for p := 0 to i - 1 do
f2[i, j, t] := max (f2[i, j, t], f2[p, p, t - 1] + s[i, 1] - s[p, 1] + s[i, 2] - s[p, 2]);
end;
ans := f2[n, n, k];
end;
begin
read (n, m, k);
for i := 1 to n do
for j := 1 to m do begin
read (s[i, j]);
inc (s[i, j], s[i - 1, j]);
end;
if m = 1 then work1 ()
else work2 ();
write (ans);
end.
题目:
——正解思路:
用链表
——我的乱搞:
暴力 swap, 结果把 m 打成了 n。。。。。。。
tips:
经过多位同学的暴力代码,证明了此题数据极水,暴力 swap 跑得比标(xiang)准(gang)答(ji)案(zhe)还快。。。。。。
凯爷内心:
以后做题要集中注意力啊,,眼睛是个好东西,,,对于做题要像如下一样
正(bao)解(li)代码:
#pragma GCC optimize("O3")
#include <cstdio>
#include <cctype>
#include <algorithm>
using namespace std;
int n, m, q, __r1, __r2, __c1, __c2, __h, __w;
int a[1001][1001];
inline int read () {
int i = 0;
char c = getchar();
while (!isdigit(c)) c = getchar();
while (isdigit(c)) i = (i << 3) + (i << 1) + c - 48, c = getchar();
return i;
}
inline void put(int x) {
short num = 0;
char c[8];
while (x) c[++num] = x % 10 + 48, x /= 10;
while (num) putchar(c[num--]);
putchar(' ');
}
int main () {
n = read();
m = read();
q = read();
for (register int i = 1; i <= n; i++)
for (register int j = 1; j <= m; j++)
a[i][j] = read();
for (register int i = 1; i <= q; i++) {
__r1 = read();
__c1 = read();
__r2 = read();
__c2 = read();
__h = read();
__w = read();
for (register int p = 0 ; p < __h; p++)
for (register int q = 0; q < __w; q++)
swap (a[__r1 + p][__c1 + q], a[__r2 + p][__c2 + q]);
}
for (register int i = 1; i <= n; i++) {
for (register int j = 1; j <= m; j++)
put(a[i][j]);
putchar ('\n');
}
return 0;
}