【吃瓜教程】周志华机器学习西瓜书第三章答案

线性模型结构梳理

3.1 试析在什么情形下式3.2中不必考虑偏置项b

答案一:

偏置项b在数值上代表了自变量取0时,因变量的取值;

1.当讨论变量x对结果y的影响,不用考虑b;
2.可以用变量归一化(max-min或z-score)来消除偏置。

 答案二:

线性规划的两个实例相减可以消去b,所以 可以令训练集的每一个样本减去第一个样本,然后对新的样本进行线性回归,此时就可不必考虑偏置项。(有点儿类似变量归一化的意思)。 

3.2试证明,对于参数w,对率回归的目标函数是非凸的,但其对数似然函数是凸的(参数存在最优解)。 

凸函数证明方法(充要条件):若f(x)在D上是半正定的,则f(x)在D上是凸函数。反之不是凸函数。

仅证明了是凸函数, 证目标函数非凸可以证明其海塞矩阵非凸即可。

3.3 编程实现对率回归,并给出西瓜数据集3.0a上的结果。 

编程实现对率回归:
思路一:* 采用sklearn逻辑斯蒂回归库函数实现,通过查看混淆矩阵,绘制决策区域来查看模型分类效果(直接调用封装好的对数几率回归函数);
思路二:* 自己编程实现,从极大化似然函数出发(找损失函数),采用梯度下降法得到最优参数(求解可行最优解),然后尝试了随机梯度下降法(优化参数)来优化过程。

1.获取数据

### 关于周志华机器学习》(西瓜)第二章的学习笔记 #### 模型评估与选择概述 模型评估与选择是机器学习领域的重要组成部分,旨在通过合理的方法评价不同模型的表现挑选最优者。这一过程不仅涉及如何衡量单个模型的好坏,还包括怎样对比多个候选方案以做出最佳决策。 #### 偏差、方差和噪声的概念解析 偏差度量了学习算法的期望预测与实际结果之间的差距,反映了算法自身的拟合精度;方差描述的是相同规模训练集变化引起的学习效果波动情况,体现了数据扰动带来的影响;而噪声则设定了给定任务下所有可能采用的学习方法能达到的最佳预期泛化误差界限,揭示了问题本身固有的复杂性和挑战性[^2]。 #### 性能度量指标——P-R图及其应用 为了更直观地展示各类分类器的工作特性,通常会绘制精确-召回(Precision-Recall, P-R)曲线来辅助分析。当面对多组实验结果时,可以通过观察这些图形相互间的位置关系来进行优劣评判:如果某条曲线始终位于另一条之上,则表明前者具有更好的整体表现;而对于那些存在交点的情况,则需进一步计算各自下方区域面积大小作为判断依据之一。此外,“平衡点”作为一种特殊的性能测度,在特定条件下也能提供有价值的参考信息[^3]。 #### 偏差-方差分解理论简介 该理论为理解学习算法的一般化能力提供了框架性的指导思路,通过对平均测试错误实施拆分操作,可以深入剖析导致过拟合现象背后的原因所在,据此探索改进措施的方向。具体而言,总误差由三部分构成——不可约减误差点(即噪声)、平方形式表达出来的偏差项以及线性累加而成的方差成分[^4]。 ```python import numpy as np from sklearn.model_selection import train_test_split from sklearn.metrics import precision_recall_curve, auc def evaluate_model_performance(model, X, y): """ 计算返回PR曲线下面积(AUC),用于量化模型的整体性能。 参数: model (object): 已经训练好的分类模型实例。 X (array-like of shape (n_samples, n_features)): 测试特征矩阵。 y (array-like of shape (n_samples,)): 对应的真实标签向量。 返回: float: PR AUC得分。 """ # 划分训练集/验证集 X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.2) # 使用训练集拟合模型 model.fit(X_train, y_train) # 获取验证集中各观测对应的概估计值 probas_pred = model.predict_proba(X_val)[:, 1] # 绘制PR曲线求得AUC分数 precisions, recalls, _ = precision_recall_curve(y_val, probas_pred) pr_auc_score = auc(recalls, precisions) return pr_auc_score ```
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值