LR为什么不可以用MSE作为损失函数

原因总结:

  1. MSE 会有梯度消失现象
  2. MSE 的导数非凸函数,求解最优解困难

证明:

1. 梯度消失公式证明:

f(x)=\theta x+b ,记为 s

只关注其中单项的公式,并简化可得:

可见, 当 h 趋近于 0 时或者趋近于 1 时,该 Loss 的导数都会趋近为 0,从而造成梯度消失现象。

2. 非凸函数公式证明

关注L{}'(\theta) 其二阶导数,可以得出其二阶导数矩阵即 Hessian 矩阵不是正定矩阵。 该导数是非凸函数,不是凸函数,难以优化。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值