【信号去噪】基于鲸鱼算法优化变分态分解WOA-VMD的GNSS时间序列去噪算法研究附matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码获取及仿真咨询内容私信。

🔥 内容介绍

基于鲸鱼算法(WOA)优化变分模态分解(VMD)的 GNSS 时间序列去噪算法,核心是通过WOA 自适应寻优 VMD 的关键参数(模态数 K 和惩罚因子 α),解决传统 VMD 参数凭经验设置导致的模态混叠或过分解问题,再通过筛选有效模态重构信号,最终实现 GNSS 时间序列中噪声(如多路径效应、观测误差)的精准去除。

该方案能有效保留 GNSS 信号中的趋势项和周期项,相比传统 VMD 去噪,在信噪比(SNR)和均方根误差(RMSE)指标上均有显著提升。

一、核心原理:WOA、VMD 与去噪逻辑的协同

GNSS 时间序列(如站坐标时间序列)包含有效信号(趋势项、周期项) 和噪声(随机噪声、多路径噪声),需通过 “分解 - 筛选 - 重构” 三步去噪。WOA 的作用是优化 VMD 的分解过程,确保有效信号与噪声被精准分离。

1. 各模块核心功能
  • VMD(变分模态分解)

    :将原始 GNSS 时间序列自适应分解为 K 个 “固有模态函数(IMF)”,每个 IMF 对应不同频率成分。分解质量完全依赖参数 K(模态数)和 α(惩罚因子)——K 过小易导致模态混叠(有效信号与噪声混合),K 过大则产生过分解(有效信号被拆分到多个 IMF)。

  • WOA(鲸鱼算法)

    :模拟座头鲸的狩猎行为(包围猎物、气泡网攻击、随机搜索),在参数空间(K 和 α 的取值范围)内迭代寻优,找到使 VMD 分解效果最优的参数组合。

  • 去噪逻辑

    :用优化后的 VMD 分解 GNSS 信号,通过 “相关系数法” 或 “能量占比法” 筛选含有效信号的 IMF,剔除含噪声主导的 IMF,最后重构筛选后的 IMF 得到去噪后的信号。

2. WOA 优化 VMD 的核心目标

WOA 的优化目标是最小化 “VMD 分解后 IMF 的综合评价指标”,该指标需同时反映 “模态混叠程度” 和 “有效信号保留程度”,常用定义如下:

⛳️ 运行结果

📣 部分代码

function fft_data = DrawFFT(data, fs)

N=length(data);

fft_data=fft(data);

magY=abs(fft_data(1:N/2))*2/N;

f=(0:N/2-1)'*fs/N;

figure()

plot(f,magY);

h=stem(f, magY, 'fill','--');

set(h,'MarkerEdgeColor','red','Marker','*');

grid on;

title('频谱图');xlabel('f(Hz)'), ylabel('幅值');

end

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌟 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位、冷链、时间窗、多车场等、选址优化、港口岸桥调度优化、交通阻抗、重分配、停机位分配、机场航班调度、通信上传下载分配优化
🌟 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌟图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌟 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻、公交车时间调度、水库调度优化、多式联运优化
🌟 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划、
🌟 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌟 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌟电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)、电动汽车充放电优化、微电网日前日内优化、储能优化、家庭用电优化、供应链优化
🌟 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌟 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌟 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

5 往期回顾扫扫下方二维码

### GNSS 数据方法与技术 #### 基于分解优化算法时间序列 针对GNSS时间序列中存在的多种声成,一种有效的解决方案是采用基于分解VMD)、经验模式分解(EMD)及其改进版本如完备集合经验模式分解(CEEMDAN),并结合鲸鱼优化算法WOA)。这种方法能够更好地离不同频率的信号,并通过优化参数来提高信比。 ```matlab % VMD 参数设置 alpha = 2000; % 调节带宽惩罚项权重 tau = 0.1; % 时间域稀疏度控制因子 K = 8; % 预估模数量 DC = 0; % 是否保留直流量 init = 1; % 初始化方式选择 tol = 1e-7; % 收敛阈值设定 [u, u_hat, omega] = vmd(signal, alpha, tau, K, DC, init, tol); ``` 上述MATLAB代码展示了如何调用`vmd()`函数来进行分解操作[^1]。此过程可以将原始含GNSS时间序列割成多个本征模函数(IMF),之后再依据各IMF的能量布特性筛选出主要反映真实地球物理现象的部加以重构,最终达到净化数据的目的。 #### 利用统计模型对抗差异常值影响 除了传统的频谱析手段外,在实际工程应用中还需要考虑由外界因素引起的突发性误差——即所谓的“粗差”。为了应对这种情况,可以通过引入稳健估计理论下的Huber损失函数构建自适应滤波器框架,以此增强系统抵抗极端观测值的能力。 ```matlab function [xhat, P] = huber_kalman(y, A, H, Q, R, delta) n = size(A, 1); m = length(H); xhat = zeros(n, length(y)); P = eye(n); for k = 1:length(y) z = y(k) - H * (A*xhat(:,k-1)); % 测量残差计算 if abs(z) < delta*R^(1/2) w = 1; else w = delta*R^(1/2)/abs(z); end S = H*P*H' + R; K = P*H'/S .* w; xhat(:,k) = A*xhat(:,k-1) + K*(y(k)-H*A*xhat(:,k-1)); P = (eye(n) - K*H)*P; end end ``` 这段伪代码实现了带有Huber加权机制的状空间更新逻辑[^2]。当遇到超出预期范围的大偏差测量时,该算法会自动降低相应样本的重要性系数w,从而削弱其对整体状预测结果的影响程度。 #### 组合导航系统中的多传感器融合策略 考虑到单一依赖GPS或其他类型的GNSS设备难以满足高动环境下连续稳定工作的需求,通常还会借助惯性测量单元(IMU)等辅助装置构成紧耦合结构。在此基础上运用强跟踪滤波(STF)原理可进一步提升综合性能表现。 ```matlab % STF初始化配置... while ~is_finished() % 获取最新一轮IMU读数及位置增量... % 更新STF内部状向量X与协方差矩阵P... % 执行一步预测阶段运算... % 如果有新的GNSS固定解到来,则触发校正环节... % 计算Kalman增益Gt... % 完成交叉验证后的最优估值修正... end ``` 以上简化版流程图描绘了一个典型IMU+GNSS联合工作场景下所涉及的关键步骤[^3]。通过实时同步两套感知体系所提供的时空坐标信息,不仅有助于克服各自固有的局限性,而且能够在一定程度上弥补因局部遮挡等原因造成的短时失锁问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值