【热力学】基于有限体积法和SIMPLE算的层流加热通道流动数值模拟Matlab实现

有限体积法与SIMPLE算法模拟层流加热通道流动

 ✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知,求助可私信。

🔥 内容介绍

本文探讨了利用有限体积法 (Finite Volume Method, FVM) 和SIMPLE算法 (Semi-Implicit Method for Pressure-Linked Equations) 模拟层流加热通道流动的数值过程。该方法的核心在于将控制方程离散化,并通过迭代求解获得流场变量的数值解。 整个过程包含多个关键步骤,其准确性和效率直接影响最终结果的可靠性。

一、 网格离散化 (Discretization)

模拟的首要步骤是将计算域离散成一系列控制体 (control volume) 组成的网格。网格的类型和质量直接影响计算精度和效率。结构化网格由于其规则性和简单性,在处理规则几何形状的通道流动问题时具有优势。然而,对于复杂几何形状,非结构化网格则更为灵活。网格的疏密程度也至关重要:过粗的网格会导致数值弥散和精度损失,而过密的网格则会增加计算负担,甚至可能导致计算发散。因此,需要根据计算精度需求和计算资源进行合理的网格划分,并进行网格无关性验证,确保结果的可靠性。

二、 初始条件设定 (Initialization)

在开始迭代求解之前,需要为每个控制体赋予流场变量的初始值,包括速度、压力和温度。初始值的设定应尽可能接近真实物理情况,以减少迭代次数并加快收敛速度。例如,对于层流加热通道流动,可以将入口速度和温度设定为已知常数,而压力场可以设定为初始静压场。不恰当的初始条件可能会导致计算发散或收敛到错误的解,因此需要谨慎选择。

三、 边界条件设定 (Boundary Conditions)

准确的边界条件设定对模拟结果的准确性至关重要。对于层流加热通道流动,常见的边界条件包括:入口速度和温度边界条件 (通常为Dirichlet边界条件,即直接指定速度和温度值),壁面温度边界条件 (也通常为Dirichlet边界条件,指定壁面温度),以及出口压力边界条件 (通常为Neumann边界条件或压力出口边界条件)。此外,还可以根据具体情况设定其他边界条件,例如对称边界条件等。边界条件的类型和数值都需要根据实际问题进行合理选择。

四、 方程求解 (Solution of Equations)

有限体积法将控制方程积分到每个控制体上,得到离散的代数方程组。对于层流加热通道流动,主要的控制方程包括Navier-Stokes方程和能量方程。SIMPLE算法是求解这些方程组的一种常用的迭代算法。该算法的核心思想是通过压力修正来满足质量守恒。具体步骤如下:

  1. 动量方程求解: 首先,忽略压力项,求解动量方程得到一个暂态速度场。

  2. 压力修正方程求解: 利用连续性方程推导压力修正方程,求解得到压力修正值。

  3. 速度场修正: 利用压力修正值修正暂态速度场,使其满足连续性方程。

  4. 迭代: 重复上述步骤,直到满足收敛准则。

SIMPLE算法的收敛速度和稳定性与松弛因子等参数密切相关,需要根据具体情况进行调整。

五、 迭代与收敛 (Iteration and Convergence)

SIMPLE算法是一个迭代过程,需要不断重复步骤四中的过程,直到达到收敛准则。收敛准则通常以残差 (residual) 为标准,即当前迭代结果与前一次迭代结果之间的差值。当所有流场变量的残差都小于预设的容差时,认为计算收敛。此外,还需要监控其他指标,例如能量守恒等,以确保计算的稳定性和准确性。过低的容差可能导致计算时间过长,而过高的容差则可能导致结果精度不足。

六、 后处理 (Post-processing)

计算收敛后,需要对获得的数值结果进行后处理,以提取所需的物理量,例如速度分布、压力分布、温度分布以及其他相关的物理量,例如壁面剪切应力、努塞尔数等。这些结果可以以图表、动画等多种形式呈现,以便于分析和理解流场的特性。

七、 数值格式与参数选择

在SIMPLE算法的实现过程中,需要选择合适的数值格式对空间导数进行离散,例如中心差分格式、迎风格式、QUICK格式等。不同的数值格式具有不同的精度和稳定性特性,需要根据具体问题进行选择。此外,时间步长和网格分辨率的选择也对计算结果的准确性和稳定性至关重要。过大的时间步长或过粗的网格可能导致计算发散,而过小的时间步长或过密的网格则会增加计算负担。因此,需要在精度和效率之间进行权衡。

结论:

利用有限体积法和SIMPLE算法模拟层流加热通道流动是一个复杂的过程,需要仔细考虑网格划分、初始条件、边界条件、数值格式以及收敛判据等诸多因素。合理的参数选择和算法实现是获得准确可靠的模拟结果的关键。 通过不断优化算法和参数,可以获得与实验结果相符的高精度数值模拟结果,为工程设计和科学研究提供重要的理论支撑。

📣 部分代码

​surface, dimensionless, and analytical FD temperatures

uCD = (u(1:Nx,:) + u(2:Nx+1,:))/2;

Tm = sum((uCD.*T),2)/(Ny*um);

if BC == 0

    Ts   = TN*ones(Nx,1); 

else

    Tm_e = (TW + qN*x/(rho*um*Ly*cp));

    Ts   = (1.5*T(:,Ny) - 0.5*T(:,Ny-1))';

end

Ni = 6;

Nc = floor(linspace(1,Nx,Ni));

Tstar = zeros(Ni,Ny);

for i = 1:length(Nc)

    I = Nc(i);

    Tstar(i,:) = (Ts(I) - T(I,:))./(Ts(I) - Tm(I));

end

ystar   = [0:0.05:1];

TstarFD = (35/136)*(5-6*(ystar).^2+(ystar).^4);

%% Print out results

plot([0,x],[TW,Tm'],'--ro','DisplayName','mean')

if BC == 0

    plot([0,Lx],[TN,TN], '--k', 'DisplayName','surface',...

                                    'LineWidth',2)    

else

    plot([0,x],[TW,Tm_e],'--k', 'DisplayName','mean (exact)',...

                                    'LineWidth',2)

    plot([0,x],[TW,Ts  ],'--bo','DisplayName','surface')

end

title('轴向温度变化')

xlabel('\itx \rm(m)','FontSize',12)

ylabel('温度(\circC)','FontSize',12)

legend('Location','northwest')

hold off

% Dimensionless temperature versus y/Ly at several x/Dh locations

subplot(2,2,4);

style = ["-bo","-bx","-b*","-b+","-bx","-bs"];

hold on

for i = 1:Ni

    plot(Tstar(i,:),y/Ly,style(i),...

         'DisplayName',num2str(x(Nc(i))/(2*Ly),'%3.1f'))

end

plot(TstarFD,ystar,'--k','DisplayName','FD','LineWidth',2)

title('无量纲温度分布')

xlabel('(\itT - T_s \rm) / (\itT_m - T_s \rm)','FontSize',12)

ylabel('\ity \rm/ \itL_y \rm','FontSize',12)

lgd = legend('Location','southwest');

title(lgd,'\itx \rm/ \itD_h')

hold off

end

⛳️ 运行结果

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除

👇 关注我领取海量matlab电子书和数学建模资料

🎁  私信完整代码和数据获取及论文数模仿真定制

擅长领域:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

各种数学算法MATLAB实现 第4章: 插值 函数名 功能 Language 求已知数据点的拉格朗日插值多项式 Atken 求已知数据点的艾特肯插值多项式 Newton 求已知数据点的均差形式的牛顿插值多项式 Newtonforward 求已知数据点的前向牛顿差分插值多项式 Newtonback 求已知数据点的后向牛顿差分插值多项式 Gauss 求已知数据点的高斯插值多项式 Hermite 求已知数据点的埃尔米特插值多项式 SubHermite 求已知数据点的分段三次埃尔米特插值多项式及其插值点处的值 SecSample 求已知数据点的二次样条插值多项式及其插值点处的值 ThrSample1 求已知数据点的第一类三次样条插值多项式及其插值点处的值 ThrSample2 求已知数据点的第二类三次样条插值多项式及其插值点处的值 ThrSample3 求已知数据点的第三类三次样条插值多项式及其插值点处的值 BSample 求已知数据点的第一类B样条的插值 DCS 用倒差商算法求已知数据点的有理分式形式的插值分式 Neville 用Neville算法求已知数据点的有理分式形式的插值分式 FCZ 用倒差商算法求已知数据点的有理分式形式的插值分式 DL 用双线性插值求已知点的插值 DTL 用二元三点拉格朗日插值求已知点的插值 DH 用分片双三次埃尔米特插值求插值点的z坐标 第5章: 函数逼近 Chebyshev 用切比雪夫多项式逼近已知函数 Legendre 用勒让德多项式逼近已知函数 Pade 用帕德形式的有理分式逼近已知函数 lmz 用列梅兹算法确定函数的最佳一致逼近多项式 ZJPF 求已知函数的最佳平方逼近多项式 FZZ 用傅立叶级数逼近已知的连续周期函数 DFF 离散周期数据点的傅立叶逼近 SmartBJ 用自适应分段线性法逼近已知函数 SmartBJ 用自适应样条逼近(第一类)已知函数 multifit 离散试验数据点的多项式曲线拟合 LZXEC 离散试验数据点的线性最小二乘拟合 ZJZXEC 离散试验数据点的正交多项式最小二乘拟合 第6章: 矩阵特征值计 Chapoly 通过求矩阵特征多项式的根来求其特征值 pmethod 幂法求矩阵的主特征值及主特征向量 rpmethod 瑞利商加速幂法求对称矩阵的主特征值及主特征向量 spmethod 收缩法求矩阵全部特征值 ipmethod 收缩法求矩阵全部特征值 dimethod 位移逆幂法求矩阵离某个常数最近的特征值及其对应的特征向量 qrtz QR基本算法求矩阵全部特征值 hessqrtz 海森伯格QR算法求矩阵全部特征值 rqrtz 瑞利商位移QR算法求矩阵全部特征值 第7章: 数值微分 MidPoint 中点公式求取导数 ThreePoint 三点法求函数的导数 FivePoint 五点法求函数的导数 DiffBSample 三次样条法求函数的导数 SmartDF 自适应法求函数的导数 CISimpson 辛普森数值微分法法求函数的导数 Richason 理查森外推算法求函数的导数 ThreePoint2 三点法求函数的二阶导数 FourPoint2 四点法求函数的二阶导数 FivePoint2 五点法求函数的二阶导数 Diff2BSample 三次样条法求函数的二阶导数 第8章: 数值积分 CombineTraprl 复合梯形公式求积分 IntSimpson 用辛普森系列公式求积分 NewtonCotes 用牛顿-科茨系列公式求积分 IntGauss 用高斯公式求积分 IntGaussLada 用高斯拉道公式求积分 IntGaussLobato 用高斯—洛巴托公式求积分 IntSample 用三次样条插值求积分 IntPWC 用抛物插值求积分 IntGaussLager 用高斯-拉盖尔公式求积分 IntGaussHermite 用高斯-埃尔米特公式求积分 IntQBXF1 求第一类切比雪夫积分 IntQBXF2 求第二类切比雪夫积分 DblTraprl 用梯形公式求重积分 DblSimpson 用辛普森公式求重积分 IntDBGauss 用高斯公式求重积分 第9章: 方程求根 BenvliMAX 贝努利法求按模最大实根 BenvliMIN 贝努利法求按模最小实根 HalfInterval 用二分法求方程的一个根 hj 用黄金分割法求方程的一个根 StablePoint 用不动点迭代法求方程的一个根 AtkenStablePoint 用艾肯特加速的不动点迭代法求方程的一个根 StevenStablePoint 用史蒂芬森加速的不动点迭代法求方程的一个根 Secant 用一般弦截法求方程的一个根 SinleSecant 用单点弦截法求方程的一个根 DblSecant 用双点弦截法求方程的一个根 PallSecant 用平行弦截法求方程的一个根 ModifSecant 用改进弦截法求方程的一个根 StevenSecant 用史蒂芬森法求方程的一个根 PYZ 用劈因子法求方程的一个二次因子 Parabola 用抛物线法求方程的一个根 QBS 用钱伯斯法求方程的一个根 NewtonRoot 用牛顿法求方程的一个根 SimpleNewton 用简化牛顿法求方程的一个根 NewtonDown 用牛顿下山法求方程的一个根 YSNewton 逐次压缩牛顿法求多项式的全部实根 Union1 用联合法1求方程的一个根 TwoStep 用两步迭代法求方程的一个根 Montecarlo 用蒙特卡洛法求方程的一个根 MultiRoot 求存在重根的方程的一个重根 第10章: 非线性方程组求解 mulStablePoint 用不动点迭代法求非线性方程组的一个根 mulNewton 用牛顿法法求非线性方程组的一个根 mulDiscNewton 用离散牛顿法法求非线性方程组的一个根 mulMix 用牛顿-雅可比迭代法求非线性方程组的一个根 mulNewtonSOR 用牛顿-SOR迭代法求非线性方程组的一个根 mulDNewton 用牛顿下山法求非线性方程组的一个根 mulGXF1 用两点割线法的第一种形式求非线性方程组的一个根 mulGXF2 用两点割线法的第二种形式求非线性方程组的一个根 mulVNewton 用拟牛顿法求非线性方程组的一组解 mulRank1 用对称秩1算法求非线性方程组的一个根 mulDFP 用D-F-P算法求非线性方程组的一组解 mulBFS 用B-F-S算法求非线性方程组的一个根 mulNumYT 用数值延拓法求非线性方程组的一组解 DiffParam1 用参数微分法中的欧拉法求非线性方程组的一组解 DiffParam2 用参数微分法中的中点积分法求非线性方程组的一组解 mulFastDown 用最速下降法求非线性方程组的一组解 mulGSND 用高斯牛顿法求非线性方程组的一组解 mulConj 用共轭梯度法求非线性方程组的一组解 mulDamp 用阻尼最小二乘法求非线性方程组的一组解 第11章: 解线性方程组的直接法 SolveUpTriangle 求上三角系数矩阵的线性方程组Ax=b的解 GaussXQByOrder 高斯顺序消去法求线性方程组Ax=b的解 GaussXQLineMain 高斯按列主元消去法求线性方程组Ax=b的解 GaussXQAllMain 高斯全主元消去法求线性方程组Ax=b的解 GaussJordanXQ 高斯-若当消去法求线性方程组Ax=b的解 Crout 克劳特分解法求线性方程组Ax=b的解 Doolittle 多利特勒分解法求线性方程组Ax=b的解 SymPos1 LL分解法求线性方程组Ax=b的解 SymPos2 LDL分解法求线性方程组Ax=b的解 SymPos3 改进的LDL分解法求线性方程组Ax=b的解 followup 追赶法求线性方程组Ax=b的解 InvAddSide 加边求逆法求线性方程组Ax=b的解 Yesf 叶尔索夫求逆法求线性方程组Ax=b的解 qrxq QR分解法求线性方程组Ax=b的解 第12章: 解线性方程组的迭代法 rs 里查森迭代法求线性方程组Ax=b的解 crs 里查森参数迭代法求线性方程组Ax=b的解 grs 里查森迭代法求线性方程组Ax=b的解 jacobi 雅可比迭代法求线性方程组Ax=b的解 gauseidel 高斯-赛德尔迭代法求线性方程组Ax=b的解 SOR 超松弛迭代法求线性方程组Ax=b的解 SSOR 对称逐次超松弛迭代法求线性方程组Ax=b的解 JOR 雅可比超松弛迭代法求线性方程组Ax=b的解 twostep 两步迭代法求线性方程组Ax=b的解 fastdown 最速下降法求线性方程组Ax=b的解 conjgrad 共轭梯度法求线性方程组Ax=b的解 preconjgrad 预处理共轭梯度法求线性方程组Ax=b的解 BJ 块雅克比迭代法求线性方程组Ax=b的解 BGS 块高斯-赛德尔迭代法求线性方程组Ax=b的解 BSOR 块逐次超松弛迭代法求线性方程组Ax=b的解 第13章: 随机数生成 PFQZ 用平方取中法产生随机数列 MixMOD 用混合同余法产生随机数列 MulMOD1 用乘同余法1产生随机数列 MulMOD2 用乘同余法2产生随机数列 PrimeMOD 用素数模同余法产生随机数列 PowerDist 产生指数分布的随机数列 LaplaceDist 产生拉普拉斯分布的随机数列 RelayDist 产生瑞利分布的随机数列 CauthyDist 产生柯西分布的随机数列 AELDist 产生爱尔朗分布的随机数列 GaussDist 产生正态分布的随机数列 WBDist 产生韦伯西分布的随机数列 PoisonDist 产生泊松分布的随机数列 BenuliDist 产生贝努里分布的随机数列 BGDist 产生贝努里-高斯分布的随机数列 TwoDist 产生二项式分布的随机数列 第14章: 特殊函数计 gamafun 用逼近法计伽玛函数的值 lngama 用Lanczos算法伽玛函数的自然对数值 Beta 用伽玛函数计贝塔函数的值 gamap 用逼近法计不完全伽玛函数的值 betap 用逼近法计不完全贝塔函数的值 bessel 用逼近法计伽玛函数的值 bessel2 用逼近法计第二类整数阶贝塞尔函数值 besselm 用逼近法计变型的第一类整数阶贝塞尔函数值 besselm2 用逼近法计变型的第二类整数阶贝塞尔函数值 ErrFunc 用高斯积分计误差函数值 SIx 用高斯积分计正弦积分值 CIx 用高斯积分计余弦积分值 EIx 用高斯积分计指数积分值 EIx2 用逼近法计指数积分值 Ellipint1 用高斯积分计第一类椭圆积分值 Ellipint2 用高斯积分计第二类椭圆积分值 第15章: 常微分方程的初值问题 DEEuler 用欧拉法求一阶常微分方程的数值解 DEimpEuler 用隐式欧拉法求一阶常微分方程的数值解 DEModifEuler 用改进欧拉法求一阶常微分方程的数值解 DELGKT2_mid 用中点法求一阶常微分方程的数值解 DELGKT2_suen 用休恩法求一阶常微分方程的数值解 DELGKT3_suen 用休恩三阶法求一阶常微分方程的数值解 DELGKT3_kuta 用库塔三阶法求一阶常微分方程的数值解 DELGKT4_lungkuta 用经典龙格-库塔法求一阶常微分方程的数值解 DELGKT4_jer 用基尔法求一阶常微分方程的数值解 DELGKT4_qt 用变形龙格-库塔法求一阶常微分方程的数值解 DELSBRK 用罗赛布诺克半隐式法求一阶常微分方程的数值解 DEMS 用默森单步法求一阶常微分方程的数值解 DEMiren 用米尔恩法求一阶常微分方程的数值解 DEYDS 用亚当斯法求一阶常微分方程的数值解 DEYCJZ_mid 用中点-梯形预测校正法求一阶常微分方程的数值解 DEYCJZ_adms 用阿达姆斯预测校正法求一阶常微分方程的数值解 DEYCJZ_adms2 用密伦预测校正法求一阶常微分方程的数值解 DEYCJZ_ yds 用亚当斯预测校正法求一阶常微分方程的数值解 DEYCJZ_ myds 用修正的亚当斯预测校正法求一阶常微分方程的数值解 DEYCJZ_hm 用汉明预测校正法求一阶常微分方程的数值解 DEWT 用外推法求一阶常微分方程的数值解 DEWT_glg 用格拉格外推法求一阶常微分方程的数值解 第16章: 偏微分方程的数值解法 peEllip5 用五点差分格式解拉普拉斯方程 peEllip5m 用工字型差分格式解拉普拉斯方程 peHypbYF 用迎风格式解对流方程 peHypbLax 用拉克斯-弗里德里希斯格式解对流方程 peHypbLaxW 用拉克斯-温德洛夫格式解对流方程 peHypbBW 用比姆-沃明格式解对流方程 peHypbRich 用Richtmyer多步格式解对流方程 peHypbMLW 用拉克斯-温德洛夫多步格式解对流方程 peHypbMC 用MacCormack多步格式解对流方程 peHypb2LF 用拉克斯-弗里德里希斯格式解二维对流方程的初值问题 peHypb2FL 用拉克斯-弗里德里希斯格式解二维对流方程的初值问题 peParabExp 用显式格式解扩散方程的初值问题 peParabTD 用跳点格式解扩散方程的初值问题 peParabImp 用隐式格式解扩散方程的初边值问题 peParabKN 用克拉克-尼科尔森格式解扩散方程的初边值问题 peParabWegImp 用加权隐式格式解扩散方程的初边值问题 peDKExp 用指数型格式解对流扩散方程的初值问题 peDKSam 用萨马尔斯基格式解对流扩散方程的初值问题 第17章: 数据统计分析 MultiLineReg 用线性回归法估计一个因变量与多个自变量之间的线性关系 PolyReg 用多项式回归法估计一个因变量与一个自变量之间的多项式关系 CompPoly2Reg 用二次完全式回归法估计一个因变量与两个自变量之间的关系 CollectAnaly 用最短距离算法的系统聚类对样本进行聚类 DistgshAnalysis 用Fisher两类判别法对样本进行分类 MainAnalysis 对样本进行主成分分析
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值