"A Bio-Inspired Multi-Exposure Fusion Framework for Low-light Image Enhancement"

低光图像由于能见度低,不利于人眼观察和计算机视觉算法。虽然已经提出了许多图像增强技术来解决这个问题,但是现有的方法不可避免地引入过对比和过增强。在人类视觉系统的启发下,我们设计了一个多曝光融合框架用于微光图像增强。基于该框架,我们提出了一种双曝光融合算法,以提供精确的对比度和亮度增强。具体而言,我们首先利用照度估计技术设计图像融合的权矩阵。然后介绍我们的相机响应模型来合成多曝光图像。其次,我们找到最佳曝光率,使合成图像在原始图像被曝光的区域被很好地曝光。最后,根据权值矩阵对输入图像和合成图像进行融合,得到增强的结果。实验结果表明,与几种先进的方法相比,我们的方法可以获得较少的对比度和亮度失真.

【图像增强】基于BIMEF算法多曝光融合框架实现微光图像增强_图像处理

【图像增强】基于BIMEF算法多曝光融合框架实现微光图像增强_matlab_02

【图像增强】基于BIMEF算法多曝光融合框架实现微光图像增强_matlab_03

startup

% specify your paths to the datasets
name = {'VV' 'LIME' 'NPE' 'NPE-ex1' 'NPE-ex2' 'NPE-ex3' 'MEF' 'DICM'};
dataset = strcat('data', filesep, name, filesep, '*.*');

% specify methods and metrics
method = {@multiscaleRetinex @dong @npe @lime @mf @srie @BIMEF};
metric = {@loe100x100}; 
% metric = {@loe100x100 @vif}; % NOTE matlabPyrTools is required to run VIF metric (vif.m).

for n = 1:numel(dataset); data = dataset{n};
    data,  
    Test = TestImage(data);        
    Test.Method = method; 
    Test.Metric = metric;
    
    % run test and display results
    Test,                     
    
    % save test to a .csv file
    save(Test); % %save(Test, ['TestReport__' name{n} '.csv']);
end
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.
  • 10.
  • 11.
  • 12.
  • 13.
  • 14.
  • 15.
  • 16.
  • 17.
  • 18.
  • 19.
  • 20.
  • 21.
  • 22.
  • 23.

【图像增强】基于BIMEF算法多曝光融合框架实现微光图像增强_图像处理_04