盲源分离简单的来讲就是在不明确系统的传输特性的前提下,从系统的源信号估计出观测信号的传输信道。

假设n个未知的源信号,各传感器接收到m个混合的观测信号,为混入的加性噪声,混合系统A为未知的混合矩阵。经过分离系统W后分离出近似与源信号的估计向,盲源分离的数学模型可以表达为:

要想分离出源信号S(t)的估计向量Y(t)主要是要求分解离矩阵W,Y(t)的分离系统过程表达式如下:

盲信号分离的原理框图如图所示,由于混合系统A和源信号S(t)都是未知的,所以对于分离出的估计向量Y(t)可能在幅度大小和排列次序存在不确定性,但是信号的信息存在于信号的波形中,所以并不影响对信号的分离。

%----------------------------------------------------------------

clc

clear all

%% --------------------------------- Set Parameters

N = 1; %The number of observed mixtures

Ns = 2; %The number of independent sources

Ls = 1000; %Sample size, i.e.: number of observations

finalTime = 40*pi; %Final sample time (s)

initialTime = 0; %Initial sample time (s)


%% --------------------------------- Generating Data for SSA-ICA

Amix = rand(N,Ns); %Amix is a random N x Ns mixing matrix

timeVector = initialTime:(finalTime-initialTime)/(Ls-1):finalTime; %Vector of time coordinates

source1 = sin(1.1*timeVector); %Independent source component 1, sin(a * t)

source2 = cos(0.25*timeVector); %Independent source component 2, cos(b * t)

S = [source1;source2]; %Source Matrix


figure

plot(timeVector,source1) %Plotting the N independent sources vs. time

xlabel('time (s)')

ylabel('Signal Amplitude')

legend('source 1')


figure

plot(timeVector,source2) %Plotting the N independent sources vs. time

xlabel('time (s)')

ylabel('Signal Amplitude')

legend('source 2')


Yobs = Amix*S; %Matrix consisting of M samples of N observed mixtures


figure

plot(timeVector,Yobs) %Plotting the observed signal vs. time

xlabel('time (s)')

ylabel('Signal Amplitude')

legend('observed signal')


%% --------------------------------- Call SSA-ICA algorithm

M = 200;

Sest = SSA_ICA(Yobs,Ns,M);


%% --------------------------------- Show results

figure

plot(timeVector, Sest(1,:))

xlabel('time (s)')

ylabel('Signal Amplitude')

legend('Source Estimation 1')


figure

plot(timeVector, Sest(2,:))

xlabel('time (s)')

ylabel('Signal Amplitude')

legend('Source Estimation 2')
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.
  • 10.
  • 11.
  • 12.
  • 13.
  • 14.
  • 15.
  • 16.
  • 17.
  • 18.
  • 19.
  • 20.
  • 21.
  • 22.
  • 23.
  • 24.
  • 25.
  • 26.
  • 27.
  • 28.
  • 29.
  • 30.
  • 31.
  • 32.
  • 33.
  • 34.
  • 35.
  • 36.
  • 37.
  • 38.
  • 39.
  • 40.
  • 41.
  • 42.
  • 43.
  • 44.
  • 45.
  • 46.
  • 47.
  • 48.
  • 49.
  • 50.
  • 51.
  • 52.
  • 53.
  • 54.
  • 55.
  • 56.
  • 57.
  • 58.
  • 59.
  • 60.
  • 61.
  • 62.
  • 63.
  • 64.
  • 65.
  • 66.
  • 67.
  • 68.
  • 69.
  • 70.
  • 71.
  • 72.
  • 73.
  • 74.
  • 75.
  • 76.
  • 77.
  • 78.
  • 79.
  • 80.
  • 81.
  • 82.
  • 83.
  • 84.
  • 85.
  • 86.
  • 87.
  • 88.
  • 89.
  • 90.
  • 91.
  • 92.
  • 93.
  • 94.
  • 95.
  • 96.
  • 97.
  1. 【信号处理】单通道盲源分离(SSA-ICA)算法_matlab

【信号处理】单通道盲源分离(SSA-ICA)算法_信号处理_02