💥💥💞💞欢迎来到Matlab仿真科研站博客之家💞💞💥💥
✅博主简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,Matlab项目合作扫描文章底部二维码。
🍎个人主页:Matlab仿真科研站博客之家
🏆代码获取方式:
💥扫描文章底部QQ二维码💥
⛳️座右铭:行百里者,半于九十;路漫漫其修远兮,吾将上下而求索。

⛄更多Matlab信号处理(仿真科研站版)仿真内容点击👇
Matlab信号处理(仿真科研站版)
⛄一、 数据融合的LEACH协议简介
1 基于自适应数据融合的LEACH协议
1.1 基本定义和概念
无线传感器网络中的一个簇可以用一个无向加权全连通图G=(V,E)来表示,V是簇中所有传感器节点的集合,E使簇中两个节点之间可以直接通信。假设顶点v∈V代表簇中的一个传感器节点,边euv=(u,v)∈E代表顶点u和v所对应的传感器节点能够直接通信。
LEACH采用的能量消耗公式是无线传感器网络中通用的一阶无线电模式[7],传感器节点在距离d发送一条长度为l bit消息所消耗的能量为:

传感器节点接收l bit消息所消耗的能量为:

其中:εamp是信号放大器的放大倍数;Eelec是发送电路和接收电路消耗的能量。
MA从节点u迁移到节点v的总能耗为:

式(3)中F(euv)表示数据融合能量。
用一个矩阵wnxn来表示簇内任意节点到其他节点所需要耗费的能量,用Euv来表示边(u,v)的权值,n表示簇内的节点个数,wij(i,j=0,1,2,…,n-1)表示由顶点i到顶点j所要耗费的能量,wii=∞。
设MA由ID、路由算法、数据缓存、处理测量数据代码组成,其中数据缓存中包含部分融合的簇成员节点的测量数据。
2 基于自适应数据融合的LEACH路由协议
基于自适应数据融合的LEACH协议的基本思想是:在LEACH的簇结构形成后,网络的能耗主要体现在感知数据的传输和融合上。
传输能耗与MA的迁移路由有关,计算MA的路由是TSP问题,本文采用最近邻居算法,从簇头出发,在所有的成员节点中寻找权值(传输能量与融合能量之和最小的边对应的节点加入到路径解中,然后再在没有访问过的节点中寻找与当前权值相比最小的节点,加入到路径解中,依次类推,直至所有的成员节点都被访问完,路径解中最后一个节点为簇头节点。
数据融合能够减少传输的数据量,从而减少传输能量,但数据融合本身又能导致能量的开销,因此当节省的传输能量大于数据融合开销时,进行数据融合对于网络节能才是有益的,反之,则会增加网络能耗。由此分析得出,对簇内成员节点应该动态地进行数据融合(自适应数据融合)。当在该节点进行数据融合能节省网络能耗时,就进行数据融合(融合计算开关置1);否则,不进行(融合计算开关置0)。在某一节点进行数据融合后所节省的能量实际是,按照计算好的MA迁移路由,未融合的感知数据从该节点传输到簇头的能量与融合后的数据从该节点传输到簇头节点的能量之差。差值与数据融合的能量进行比较,大于0时,在该节点进行数据融合,否则,不进行。因此簇中某一节点是否进行数据融合还得在迁移路径上后面的节点开关值确定之后才能确定,于是对应于迁移路径上的节点顺序,各节点的融合开关值是逆序计算的。
簇内各成员节点的数据收集和处理过程是:簇头节点按照簇内成员节点的数目,生成一个TDMA时隙表,簇头节点根据MA的迁移路由中各节点的顺序依次为每个成员分配通信时隙,成员节点只能在其特定的时隙内与由簇头创建的MA进行通信,此时簇内其他成员节点关闭通信模块以节省能量。然后,簇头节点的MAE开始创建并派遣MA,MA从簇头出发,按照已经计算好的迁移路由和各节点的融合计算开关值,MA依次迁移到各节点,当融合计算开关为1(0)时,MA携带的数据缓存中的数据与相应节点采集的数据进行(不进行)数据融合,最后MA携带着融合处理后的数据返回簇头,完成一次数据收集。
基于自适应数据融合的LEACH协议的基本思想简述为以下三点:
(1)计算MA的迁移路由(子函数1)
根据最近邻居算法计算MA的迁移路径:从簇头出发,依次取权值(传输能量与融合能量之和)最小的边对应的点加入当前解中直至形成回路解。
(2)计算自适应数据融合开关值(子函数2)
假设通过子函数1求得的MA迁移路由为{x0,x1,x2…,xk,xk+1,…,xn-1,x0}(其中x0为簇头),未融合的感知数据从某一节点传输到簇头的能量与融合后的数据从该节点传输到簇头节点的能量作差,其差值和数据融合的能量进行比较,大于0时,在该节点进行数据融合,融合计算开关置1;否则,不进行数据融合,融合计算开关置0。由于节点xk必须知道它后面的节点xk+1,…,xn-1的融合计算开关值,才能计算出它自己的,故逆序求解In-1,In-2,…,I2,I1,亦即得出该簇内哪些节点进行融合计算,哪些不进行。
(3)进行簇内所有成员节点的数据收集(主函数)
调用子函数1,求出MA的迁移路径{x0,x1,x2,…,xk,xk+1,…,xn-1,x0};
调用子函数2,根据子函数1的迁移路径求出簇内各节点的融合计算开关值In-1,In-2,…,I2,I1;
簇头节点派遣MA,收集节点xi(i=1,2,…,n-1)的感知数据,根据Ii=1(或0)的值融合(或不融合)节点xi的感知数据与MA数据缓存中的数据,最后所有的数据汇总至簇头节点。
⛄二、部分源代码
clc;
clear;
close all
%% 1.初始参数设定模块
%.传感器节点区域界限(单位 m)
xm = 200;
ym = 200;
% (1)汇聚节坐标给定
sink.x = 0;
sink.y = 0;
% 区域内传器节数
n = 200;
% 簇头优化比例(当选簇头的概率)
p = 0.1;
% 能量模型(单位 J)
% 初始化能量模型
Eo = 0.5;
% Eelec=Etx=Erx
ETX = 500.000000001;
ERX = 500.000000001;
% Transmit Amplifier types
Efs = 100.000000000001;
Emp = 0.00130.000000000001;
% Data Aggregation Energy
EDA = 50.000000001;
% 最大循环次数
rmax = 2000;
% 算出参数 do
do = sqrt(Efs/Emp);
% 包大小(单位 bit)
packetLength = 4000; % 数据包大小
% 参数
alpha = 0.5; % 距离参数
beta = 0.5; % 能量参数
% 感知半径
R = sqrt(xmym/(pinp));
%% 2.无线传感器网络模型产生模块
% 构建无线传感器网络,在区域内均匀投放100个节点,并画出图形
for i = 1:n
S1(i).xd = rand(1,1)*xm;
S1(i).yd = rand(1,1)*ym;
S2(i).xd = S1(i).xd;
S2(i).yd = S1(i).yd;
S3(i).xd = S2(i).xd;
S3(i).yd = S2(i).yd;
S4(i).xd = S3(i).xd;
S4(i).yd = S3(i).yd;
S1(i).G = 0;
S2(i).G = 0;
S3(i).G = 0;
S4(i).G = 0;
S1(i).E = Eo;
S2(i).E = Eo;
S3(i).E = Eo;
S4(i).E = Eo;
S3(i).d = sqrt((S3(i).xd-sink.x)2+(S3(i).yd-sink.y)2);
S4(i).D = S3(i).d;
% initially there are no cluster heads only nodes
S1(i).type = ‘N’;
S2(i).type = ‘N’;
S3(i).type = ‘N’;
S4(i).type = ‘N’;
end
S1(n+1).xd = sink.x;
S1(n+1).yd = sink.y;
S2(n+1).xd = sink.x;
S2(n+1).yd = sink.y;
S3(n+1).xd = sink.x;
S3(n+1).yd = sink.y;
S4(n+1).xd = sink.x;
S4(n+1).yd = sink.y;
%%%%%%%%%%%%%%%%%%%%LEACH%%%%%%%%%%%%%%%%%%
%% 3.网络运行模块
% 簇头节点数
countCHs = 0;
cluster = 1;% 此定义的目的仅仅是给定一个1开始的下标参数,真正的簇头数应该还减去1
flag_first_dead = 0;
flag_teenth_dead = 0;
flag_all_dead = 0;
% 死亡节点数
dead = 0;
first_dead1 = 0;
teenth_dead1 = 0;
all_dead1 = 0;
% 活动节点数
alive = n;
% 传输到基站和簇头的比特计数器
packets_TO_BS = 0;
packets_TO_CH = 0;
% (1)循环模式设定
for r = 0:rmax % 该 for 循环将下面的所有程序包括在内,直到最后 end 才结束循环
r
% 每过一个轮转周期(本程序为10次)使各节点的S(i).G参数(该参数用于后面的簇选举,在该轮转周期内已当选过簇头的节点不能再当选)恢复为零
if mod(r, round(1/p)) == 0
for i = 1:n
S1(i).G = 0;
end
end
% (2)死亡节点检查模块
dead = 0;
Eavg = 0;
for i = 1:n
% 检查有无死亡节点
if S1(i).E <= 0
dead = dead+1;
% (3)第一个死亡节点的产生时间(用轮次表示)
% 第一个节点死亡时间
if dead == 1
if flag_first_dead == 0
first_dead1 = r;
flag_first_dead = 1;
end
end
% 10%的节点死亡时间
if dead == 0.1n
if flag_teenth_dead ==0
teenth_dead1 = r;
flag_teenth_dead = 1;
end
end
if dead == n
if flag_all_dead == 0
all_dead1 = r;
flag_all_dead = 1;
end
end
else
Eavg = Eavg + S1(i).E;
S1(i).type = ‘N’;
end
end
STATISTICS.ENERGY1(r+1) = Eavg;
STATISTICS.DEAD1(r+1) = dead;
STATISTICS.ALIVE1(r+1) = alive-dead;
% (4)簇头选举模块
countCHs = 0;
cluster = 1;
for i = 1:n
if S1(i).E > 0
temp_rand=rand;
if S1(i).G <= 0
% 簇头的选举,当选的簇头会把各种相关信存入下面程序所给定的变量中
if temp_rand <= p/(1-pmod(r,round(1/p)))
countCHs = countCHs+1;
packets_TO_BS = packets_TO_BS+1;
S1(i).type = ‘C’;
S1(i).G = round(1/p)-1;
C(cluster).xd = S1(i).xd;
C(cluster).yd = S1(i).yd;
distance = sqrt((S1(i).xd-S1(n+1).xd)^2 + (S1(i).yd-S1(n+1).yd)^2);
C(cluster).distance = distance;
C(cluster).id = i;
cluster = cluster+1;
% 计算簇头发送packetLength bit数据到基站的能量消耗(这里应是所有节点包括簇头每一轮发送packetLength bit数据)
if distance > do
S1(i).E = S1(i).E- ((ETX+EDA)packetLength + EmppacketLengthdistance^4);
else
S1(i).E=S1(i).E- ((ETX+EDA)packetLength + EfspacketLengthdistance^2);
end
end
end
end
end
STATISTICS.COUNTCHS1(r+1) = countCHs;
% (5)簇内成员选择簇头模块(即簇的形成模块)
% 簇内成员对簇头的选择(即簇的形成)算法
for i = 1:n
if S1(i).type == ‘N’ && S1(i).E > 0
if cluster-1 >= 1
min_dis = inf;
min_dis_cluster = 0;
for c = 1:cluster-1
temp = min(min_dis, sqrt((S1(i).xd-C©.xd)^2 + (S1(i).yd-C©.yd)^2));
if temp < min_dis
min_dis = temp;
min_dis_cluster = c;
end
end
if min_dis_cluster ~= 0
% 簇内节点(发送packetLength bit数据)能量消耗
if min_dis > do
S1(i).E=S1(i).E- (ETXpacketLength + EmppacketLengthmin_dis^4);
else
S1(i).E = S1(i).E- (ETXpacketLength + EfspacketLengthmin_dis^2);
end
% 簇头(接收和融合这一簇内节点packetLength bit数据)的能量消耗
S1(C(min_dis_cluster).id).E = S1(C(min_dis_cluster).id).E- ((ERX + EDA)packetLength);
packets_TO_CH = packets_TO_CH+1;
else
if min_dis > do
S1(i).E = S1(i).E- (ETXpacketLength + EmppacketLengthmin_dis^4);
else
S1(i).E = S1(i).E- (ETXpacketLength + EfspacketLengthmin_dis^2);
end
packets_TO_BS = packets_TO_BS+1;
end
S1(i).min_dis = min_dis;
S1(i).min_dis_cluster = min_dis_cluster;
else
min_dis = sqrt((S1(i).xd-S1(n+1).xd)^2 + (S1(i).yd-S1(n+1).yd)^2);
if min_dis > do
S1(i).E = S1(i).E- (ETXpacketLength + EmppacketLengthmin_dis^4);
else
S1(i).E = S1(i).E- (ETXpacketLength + EfspacketLength*min_dis^2);
end
packets_TO_BS = packets_TO_BS+1;
end
end
end
STATISTICS.PACKETS_TO_CH1(r+1) = packets_TO_CH;
STATISTICS.PACKETS_TO_BS1(r+1) = packets_TO_BS;
end
%%%%%%%%%%%%%%%%%%%%LEACH_E%%%%%%%%%%%%%%%%%%
% 簇头节点数
countCHs = 0;
cluster = 1;% 此定义的目的仅仅是给定一个1开始的下标参数,真正的簇头数应该还减去1
flag_first_dead = 0;
flag_teenth_dead = 0;
flag_all_dead = 0;
% 死亡节点数
dead = 0;
first_dead2 = 0;
teenth_dead2 = 0;
all_dead2 = 0;
% 活动节点数
alive = n;
% 传输到基站和簇头的比特计数器
packets_TO_BS = 0;
packets_TO_CH = 0;
% (1)循环模式设定
for r = 0:rmax % 该 for 循环将下面的所有程序包括在内,直到最后 end 才结束循环
r
% 每过一个轮转周期(本程序为10次)使各节点的S(i).G参数(该参数用于后面的簇选举,在该轮转周期内已当选过簇头的节点不能再当选)恢复为零
if mod(r, round(1/p)) == 0
for i = 1:n
S2(i).G = 0;
end
end
⛄三、运行结果


⛄四、matlab版本及参考文献
1 matlab版本
2014a
2 参考文献
[1] 王培东,袁召兰,王瑜.基于自适应数据融合的LEACH路由协议[J].电子技术应用. 2011,37(07)
3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除
🍅 仿真咨询
1 各类智能优化算法改进及应用
1.1 PID优化
1.2 VMD优化
1.3 配电网重构
1.4 三维装箱
1.5 微电网优化
1.6 优化布局
1.7 优化参数
1.8 优化成本
1.9 优化充电
1.10 优化调度
1.11 优化电价
1.12 优化发车
1.13 优化分配
1.14 优化覆盖
1.15 优化控制
1.16 优化库存
1.17 优化路由
1.18 优化设计
1.19 优化位置
1.20 优化吸波
1.21 优化选址
1.22 优化运行
1.23 优化指派
1.24 优化组合
1.25 车间调度
1.26 生产调度
1.27 经济调度
1.28 装配线调度
1.29 水库调度
1.30 货位优化
1.31 公交排班优化
1.32 集装箱船配载优化
1.33 水泵组合优化
1.34 医疗资源分配优化
1.35 可视域基站和无人机选址优化
2 机器学习和深度学习分类与预测
2.1 机器学习和深度学习分类
2.1.1 BiLSTM双向长短时记忆神经网络分类
2.1.2 BP神经网络分类
2.1.3 CNN卷积神经网络分类
2.1.4 DBN深度置信网络分类
2.1.5 DELM深度学习极限学习机分类
2.1.6 ELMAN递归神经网络分类
2.1.7 ELM极限学习机分类
2.1.8 GRNN广义回归神经网络分类
2.1.9 GRU门控循环单元分类
2.1.10 KELM混合核极限学习机分类
2.1.11 KNN分类
2.1.12 LSSVM最小二乘法支持向量机分类
2.1.13 LSTM长短时记忆网络分类
2.1.14 MLP全连接神经网络分类
2.1.15 PNN概率神经网络分类
2.1.16 RELM鲁棒极限学习机分类
2.1.17 RF随机森林分类
2.1.18 SCN随机配置网络模型分类
2.1.19 SVM支持向量机分类
2.1.20 XGBOOST分类
2.2 机器学习和深度学习预测
2.2.1 ANFIS自适应模糊神经网络预测
2.2.2 ANN人工神经网络预测
2.2.3 ARMA自回归滑动平均模型预测
2.2.4 BF粒子滤波预测
2.2.5 BiLSTM双向长短时记忆神经网络预测
2.2.6 BLS宽度学习神经网络预测
2.2.7 BP神经网络预测
2.2.8 CNN卷积神经网络预测
2.2.9 DBN深度置信网络预测
2.2.10 DELM深度学习极限学习机预测
2.2.11 DKELM回归预测
2.2.12 ELMAN递归神经网络预测
2.2.13 ELM极限学习机预测
2.2.14 ESN回声状态网络预测
2.2.15 FNN前馈神经网络预测
2.2.16 GMDN预测
2.2.17 GMM高斯混合模型预测
2.2.18 GRNN广义回归神经网络预测
2.2.19 GRU门控循环单元预测
2.2.20 KELM混合核极限学习机预测
2.2.21 LMS最小均方算法预测
2.2.22 LSSVM最小二乘法支持向量机预测
2.2.23 LSTM长短时记忆网络预测
2.2.24 RBF径向基函数神经网络预测
2.2.25 RELM鲁棒极限学习机预测
2.2.26 RF随机森林预测
2.2.27 RNN循环神经网络预测
2.2.28 RVM相关向量机预测
2.2.29 SVM支持向量机预测
2.2.30 TCN时间卷积神经网络预测
2.2.31 XGBoost回归预测
2.2.32 模糊预测
2.2.33 奇异谱分析方法SSA时间序列预测
2.3 机器学习和深度学习实际应用预测
CPI指数预测、PM2.5浓度预测、SOC预测、财务预警预测、产量预测、车位预测、虫情预测、带钢厚度预测、电池健康状态预测、电力负荷预测、房价预测、腐蚀率预测、故障诊断预测、光伏功率预测、轨迹预测、航空发动机寿命预测、汇率预测、混凝土强度预测、加热炉炉温预测、价格预测、交通流预测、居民消费指数预测、空气质量预测、粮食温度预测、气温预测、清水值预测、失业率预测、用电量预测、运输量预测、制造业采购经理指数预测
3 图像处理方面
3.1 图像边缘检测
3.2 图像处理
3.3 图像分割
3.4 图像分类
3.5 图像跟踪
3.6 图像加密解密
3.7 图像检索
3.8 图像配准
3.9 图像拼接
3.10 图像评价
3.11 图像去噪
3.12 图像融合
3.13 图像识别
3.13.1 表盘识别
3.13.2 车道线识别
3.13.3 车辆计数
3.13.4 车辆识别
3.13.5 车牌识别
3.13.6 车位识别
3.13.7 尺寸检测
3.13.8 答题卡识别
3.13.9 电器识别
3.13.10 跌倒检测
3.13.11 动物识别
3.13.12 二维码识别
3.13.13 发票识别
3.13.14 服装识别
3.13.15 汉字识别
3.13.16 红绿灯识别
3.13.17 虹膜识别
3.13.18 火灾检测
3.13.19 疾病分类
3.13.20 交通标志识别
3.13.21 卡号识别
3.13.22 口罩识别
3.13.23 裂缝识别
3.13.24 目标跟踪
3.13.25 疲劳检测
3.13.26 旗帜识别
3.13.27 青草识别
3.13.28 人脸识别
3.13.29 人民币识别
3.13.30 身份证识别
3.13.31 手势识别
3.13.32 数字字母识别
3.13.33 手掌识别
3.13.34 树叶识别
3.13.35 水果识别
3.13.36 条形码识别
3.13.37 温度检测
3.13.38 瑕疵检测
3.13.39 芯片检测
3.13.40 行为识别
3.13.41 验证码识别
3.13.42 药材识别
3.13.43 硬币识别
3.13.44 邮政编码识别
3.13.45 纸牌识别
3.13.46 指纹识别
3.14 图像修复
3.15 图像压缩
3.16 图像隐写
3.17 图像增强
3.18 图像重建
4 路径规划方面
4.1 旅行商问题(TSP)
4.1.1 单旅行商问题(TSP)
4.1.2 多旅行商问题(MTSP)
4.2 车辆路径问题(VRP)
4.2.1 车辆路径问题(VRP)
4.2.2 带容量的车辆路径问题(CVRP)
4.2.3 带容量+时间窗+距离车辆路径问题(DCTWVRP)
4.2.4 带容量+距离车辆路径问题(DCVRP)
4.2.5 带距离的车辆路径问题(DVRP)
4.2.6 带充电站+时间窗车辆路径问题(ETWVRP)
4.2.3 带多种容量的车辆路径问题(MCVRP)
4.2.4 带距离的多车辆路径问题(MDVRP)
4.2.5 同时取送货的车辆路径问题(SDVRP)
4.2.6 带时间窗+容量的车辆路径问题(TWCVRP)
4.2.6 带时间窗的车辆路径问题(TWVRP)
4.3 多式联运运输问题
4.4 机器人路径规划
4.4.1 避障路径规划
4.4.2 迷宫路径规划
4.4.3 栅格地图路径规划
4.5 配送路径规划
4.5.1 冷链配送路径规划
4.5.2 外卖配送路径规划
4.5.3 口罩配送路径规划
4.5.4 药品配送路径规划
4.5.5 含充电站配送路径规划
4.5.6 连锁超市配送路径规划
4.5.7 车辆协同无人机配送路径规划
4.6 无人机路径规划
4.6.1 飞行器仿真
4.6.2 无人机飞行作业
4.6.3 无人机轨迹跟踪
4.6.4 无人机集群仿真
4.6.5 无人机三维路径规划
4.6.6 无人机编队
4.6.7 无人机协同任务
4.6.8 无人机任务分配
5 语音处理
5.1 语音情感识别
5.2 声源定位
5.3 特征提取
5.4 语音编码
5.5 语音处理
5.6 语音分离
5.7 语音分析
5.8 语音合成
5.9 语音加密
5.10 语音去噪
5.11 语音识别
5.12 语音压缩
5.13 语音隐藏
6 元胞自动机方面
6.1 元胞自动机病毒仿真
6.2 元胞自动机城市规划
6.3 元胞自动机交通流
6.4 元胞自动机气体
6.5 元胞自动机人员疏散
6.6 元胞自动机森林火灾
6.7 元胞自动机生命游戏
7 信号处理方面
7.1 故障信号诊断分析
7.1.1 齿轮损伤识别
7.1.2 异步电机转子断条故障诊断
7.1.3 滚动体内外圈故障诊断分析
7.1.4 电机故障诊断分析
7.1.5 轴承故障诊断分析
7.1.6 齿轮箱故障诊断分析
7.1.7 三相逆变器故障诊断分析
7.1.8 柴油机故障诊断
7.2 雷达通信
7.2.1 FMCW仿真
7.2.2 GPS抗干扰
7.2.3 雷达LFM
7.2.4 雷达MIMO
7.2.5 雷达测角
7.2.6 雷达成像
7.2.7 雷达定位
7.2.8 雷达回波
7.2.9 雷达检测
7.2.10 雷达数字信号处理
7.2.11 雷达通信
7.2.12 雷达相控阵
7.2.13 雷达信号分析
7.2.14 雷达预警
7.2.15 雷达脉冲压缩
7.2.16 天线方向图
7.2.17 雷达杂波仿真
7.3 生物电信号
7.3.1 肌电信号EMG
7.3.2 脑电信号EEG
7.3.3 心电信号ECG
7.3.4 心脏仿真
7.4 通信系统
7.4.1 DOA估计
7.4.2 LEACH协议
7.4.3 编码译码
7.4.4 变分模态分解
7.4.5 超宽带仿真
7.4.6 多径衰落仿真
7.4.7 蜂窝网络
7.4.8 管道泄漏
7.4.9 经验模态分解
7.4.10 滤波器设计
7.4.11 模拟信号传输
7.4.12 模拟信号调制
7.4.13 数字基带信号
7.4.14 数字信道
7.4.15 数字信号处理
7.4.16 数字信号传输
7.4.17 数字信号去噪
7.4.18 水声通信
7.4.19 通信仿真
7.4.20 无线传输
7.4.21 误码率仿真
7.4.22 现代通信
7.4.23 信道估计
7.4.24 信号检测
7.4.25 信号融合
7.4.26 信号识别
7.4.27 压缩感知
7.4.28 噪声仿真
7.4.29 噪声干扰
7.5 无人机通信
7.6 无线传感器定位及布局方面
7.6.1 WSN定位
7.6.2 高度预估
7.6.3 滤波跟踪
7.6.4 目标定位
7.6.4.1 Dv-Hop定位
7.6.4.2 RSSI定位
7.6.4.3 智能算法优化定位
7.6.5 组合导航
8 电力系统方面
微电网优化、无功优化、配电网重构、储能配置
456

被折叠的 条评论
为什么被折叠?



