💥💥💞💞欢迎来到Matlab仿真科研站博客之家💞💞💥💥
✅博主简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,Matlab项目合作可私信。
🍎个人主页:Matlab仿真科研站博客之家
🏆代码获取方式:
💥扫描文章底部QQ二维码💥
⛳️座右铭:行百里者,半于九十;路漫漫其修远兮,吾将上下而求索。
⛄更多Matlab神经网络预测与分类(仿真科研站版)仿真内容点击👇
Matlab神经网络预测与分类(仿真科研站版)
⛄一、灰狼算法及BP神经网络简介
1 BP算法
BP (Back—Propagation) 神经网络是由Rumelhart, McClelland提出的概念, 其结构简单、可操作性强, 具有非线性映射能力, 是目前应用最广泛的人工神经网络。但BP算法存在收敛速度慢、容易陷入局部最优等缺陷, 在很大程度上影响了预测结果。BP模型如图1所示, 该模型包括输入层、隐层、输出层, 其中W、V为连接权矩阵, 跨层的神经元之间则不连接。
图1 BP神经网络结构图
BP神经网络算法由信号的正向传播和误差的反向传播两个过程组成。正向传播, 输入信号通过隐含层处理, 经过非线性变换, 转向输出层产生输出信号, 若输出值与期望值不符, 则转入反向传播过程。误差反传是将输出误差信号通过隐含层向输入层逐层反传, 通过修改各神经元的权值, 使误差沿梯度方向下降, 这样反复学习训练, 直到输出的误差达到要求或者达到最大迭代次数, 训练停止。
(1)权值初始化
将网络中的所有权值随机初始化。
(2) 根据实例的输入, 计算输出层每个单元的输出。
网络的实际输出及隐层单元的状态Okj, 由公式 (1) 计算:
公式中, θj是阈值, 一般可采用Sigmoid函数, 即公式 (2) 作为激励函数作用于它。
(3) 计算网络各层误差信号
对于输出层的每个单元k, 误差δk, 由公式 (3) 计算:
Ok是单元k的实际输出值, Ok (1-Ok) 是Logistic函数的导数, 而Tk是基于k给定训练元组的已知目标值。
而对于隐藏层单元h的误差由公式 (4) 计算:
(4)调整各层的权值
公式 (5) 是权值的更新公式, 公式 (6) 阈值的更新公式。
(5)核查算法是否符合结束条件
如果网络总误差满足设定的精度要求或符合结束条件, 训练过程结束。否则, 继续进行下一轮训练。
2 GWO算法
GWO算法是Mirjalil等人2014年提出的一种新型群智能优化算法, 该算法通过模拟自然界中灰狼的狩猎跟踪、追捕、包围和攻击等建立一个数学模型, 进而完成最优化工作。整个狼群按照适应度值被分为最优灰狼α、次优灰狼β、第三优灰狼β和其他狼ω四个等级。在捕食过程中α、β、δ灰狼追捕猎物, ω狼追随前三者进向着目标搜索。捕食过程中, 灰狼个体与猎物的距离为:
公式中t表示迭代次数;Xp (t) 是猎物的位置, X (t) 表示第t代时灰狼的位置, D表示猎物与灰狼之间的距离, C=2r1。
灰狼位置更新为:
其中, a是收敛因子, 取值[0, 2], max是最大迭代次数;r2和r2均是[0, 1]的随机数:当|A|>1时, 灰狼群体将搜索范围扩大, 进行全局搜索;|A|<1时, 灰狼群体将包围圈缩小, 进行局部搜索。
在狼群中, 利用α、β、δ这三头狼的位置跟踪猎物的数学描述如下:
式 (12) 和式 (13) 定义了狼群内ω与α、β、δ的距离关系。
式 (13) 根据α、β、δ的位置计算ω狼的最终位置。
3 GWO优化BP神经网络
由于BP神经网络采用均方误差梯度下降方向进行收敛, 因此容易陷入局部最优, 且收敛速度慢, 而且BP神经网络对初始化参数中的权值和阀值具有较大的敏感性。本文采用GWO优化BP神经网络, 以达到克服BP算法的缺陷, 避免陷入局部最优, 而且使收敛加速。
用GWO优化BP神经网络, 即将灰狼的位置信息作为BP神经网络的权重和阈值, 灰狼不断对猎物的位置进行判断和更新, 相当于在不断更新BP神经网络的阈值和权重, 通过多次迭代, 最终计算全局最优结果。优化BP神经网络具体步骤:
1.初始化参数。包括灰狼种群大小、灰狼个体位置信息的维度、灰狼维度的上界和下界, 最大迭代次数、随机初始化灰狼位置。
2.将灰狼的位置映射给BP神经网络, 按照公式计算适应度
3.适应度值的计算:狼群内部按照等级被分为最优、次优、第三优、和普通狼四组, 并根据与的位置, 用公式 (11) ~ (13) 更新的位置信息, 并更新参数a、A和C的值。
4.判断灰狼个体的每一维度越界情况, 如有越界, 把灰狼维度的上界或下界设置为越界的值。
5.判断迭代次数:如果小于最大迭代次数, 重复步骤2-步骤5, 继续下一次迭代, 直到满足条件;否则结束算法。
⛄二、部分源代码
%% 初始化
clear
close all
clc
warning off
%% 数据读取
data=xlsread(‘数据.xlsx’,‘Sheet1’,‘A1:A252’); %%使用xlsread函数读取EXCEL中对应范围的数据即可
n=10;
[input,output]=data_process(data’,n);%前n个时刻 预测下一个时刻
%输入输出数据
% input=data(:,1:end-1); %data的第一列-倒数第二列为特征指标
% output=data(:,end); %data的最后面一列为输出的指标值
N=length(output); %全部样本数目
testNum=15; %设定测试样本数目
trainNum=N-testNum; %计算训练样本数目
%% 划分训练集、测试集
input_train = input(1:trainNum,:)‘;
output_train =output(1:trainNum)’;
input_test =input(trainNum+1:trainNum+testNum,:)‘;
output_test =output(trainNum+1:trainNum+testNum)’;
%% 数据归一化
[inputn,inputps]=mapminmax(input_train,0,1);
[outputn,outputps]=mapminmax(output_train);
inputn_test=mapminmax(‘apply’,input_test,inputps);
%% 获取输入层节点、输出层节点个数
inputnum=size(input,2);
outputnum=size(output,2);
disp(‘/////////////////////////////////’)
disp(‘神经网络结构…’)
disp([‘输入层的节点数为:’,num2str(inputnum)])
disp([‘输出层的节点数为:’,num2str(outputnum)])
disp(’ ')
disp(‘隐含层节点的确定过程…’)
%确定隐含层节点个数
%采用经验公式hiddennum=sqrt(m+n)+a,m为输入层节点个数,n为输出层节点个数,a一般取为1-10之间的整数
MSE=1e+5; %初始化最小误差
for hiddennum=fix(sqrt(inputnum+outputnum))+1:fix(sqrt(inputnum+outputnum))+10
%构建网络
net=newff(inputn,outputn,hiddennum);
% 网络参数
net.trainParam.epochs=1000; % 训练次数
net.trainParam.lr=0.01; % 学习速率
net.trainParam.goal=0.000001; % 训练目标最小误差
% 网络训练
net=train(net,inputn,outputn);
an0=sim(net,inputn); %仿真结果
mse0=mse(outputn,an0); %仿真的均方误差
disp(['隐含层节点数为',num2str(hiddennum),'时,训练集的均方误差为:',num2str(mse0)])
%更新最佳的隐含层节点
if mse0<MSE
MSE=mse0;
hiddennum_best=hiddennum;
end
end
⛄三、运行结果
⛄四、matlab版本及参考文献
1 matlab版本
2014a
2 参考文献
[1]于淑香,温一军.基于GWO-BP算法的软件缺陷预测模型[J].安徽电子信息职业技术学院学报. 2018,17(06)
3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除
🍅 仿真咨询
1 各类智能优化算法改进及应用
1.1 PID优化
1.2 VMD优化
1.3 配电网重构
1.4 三维装箱
1.5 微电网优化
1.6 优化布局
1.7 优化参数
1.8 优化成本
1.9 优化充电
1.10 优化调度
1.11 优化电价
1.12 优化发车
1.13 优化分配
1.14 优化覆盖
1.15 优化控制
1.16 优化库存
1.17 优化路由
1.18 优化设计
1.19 优化位置
1.20 优化吸波
1.21 优化选址
1.22 优化运行
1.23 优化指派
1.24 优化组合
1.25 车间调度
1.26 生产调度
1.27 经济调度
1.28 装配线调度
1.29 水库调度
1.30 货位优化
1.31 公交排班优化
1.32 集装箱船配载优化
1.33 水泵组合优化
1.34 医疗资源分配优化
1.35 可视域基站和无人机选址优化
2 机器学习和深度学习分类与预测
2.1 机器学习和深度学习分类
2.1.1 BiLSTM双向长短时记忆神经网络分类
2.1.2 BP神经网络分类
2.1.3 CNN卷积神经网络分类
2.1.4 DBN深度置信网络分类
2.1.5 DELM深度学习极限学习机分类
2.1.6 ELMAN递归神经网络分类
2.1.7 ELM极限学习机分类
2.1.8 GRNN广义回归神经网络分类
2.1.9 GRU门控循环单元分类
2.1.10 KELM混合核极限学习机分类
2.1.11 KNN分类
2.1.12 LSSVM最小二乘法支持向量机分类
2.1.13 LSTM长短时记忆网络分类
2.1.14 MLP全连接神经网络分类
2.1.15 PNN概率神经网络分类
2.1.16 RELM鲁棒极限学习机分类
2.1.17 RF随机森林分类
2.1.18 SCN随机配置网络模型分类
2.1.19 SVM支持向量机分类
2.1.20 XGBOOST分类
2.2 机器学习和深度学习预测
2.2.1 ANFIS自适应模糊神经网络预测
2.2.2 ANN人工神经网络预测
2.2.3 ARMA自回归滑动平均模型预测
2.2.4 BF粒子滤波预测
2.2.5 BiLSTM双向长短时记忆神经网络预测
2.2.6 BLS宽度学习神经网络预测
2.2.7 BP神经网络预测
2.2.8 CNN卷积神经网络预测
2.2.9 DBN深度置信网络预测
2.2.10 DELM深度学习极限学习机预测
2.2.11 DKELM回归预测
2.2.12 ELMAN递归神经网络预测
2.2.13 ELM极限学习机预测
2.2.14 ESN回声状态网络预测
2.2.15 FNN前馈神经网络预测
2.2.16 GMDN预测
2.2.17 GMM高斯混合模型预测
2.2.18 GRNN广义回归神经网络预测
2.2.19 GRU门控循环单元预测
2.2.20 KELM混合核极限学习机预测
2.2.21 LMS最小均方算法预测
2.2.22 LSSVM最小二乘法支持向量机预测
2.2.23 LSTM长短时记忆网络预测
2.2.24 RBF径向基函数神经网络预测
2.2.25 RELM鲁棒极限学习机预测
2.2.26 RF随机森林预测
2.2.27 RNN循环神经网络预测
2.2.28 RVM相关向量机预测
2.2.29 SVM支持向量机预测
2.2.30 TCN时间卷积神经网络预测
2.2.31 XGBoost回归预测
2.2.32 模糊预测
2.2.33 奇异谱分析方法SSA时间序列预测
2.3 机器学习和深度学习实际应用预测
CPI指数预测、PM2.5浓度预测、SOC预测、财务预警预测、产量预测、车位预测、虫情预测、带钢厚度预测、电池健康状态预测、电力负荷预测、房价预测、腐蚀率预测、故障诊断预测、光伏功率预测、轨迹预测、航空发动机寿命预测、汇率预测、混凝土强度预测、加热炉炉温预测、价格预测、交通流预测、居民消费指数预测、空气质量预测、粮食温度预测、气温预测、清水值预测、失业率预测、用电量预测、运输量预测、制造业采购经理指数预测
3 图像处理方面
3.1 图像边缘检测
3.2 图像处理
3.3 图像分割
3.4 图像分类
3.5 图像跟踪
3.6 图像加密解密
3.7 图像检索
3.8 图像配准
3.9 图像拼接
3.10 图像评价
3.11 图像去噪
3.12 图像融合
3.13 图像识别
3.13.1 表盘识别
3.13.2 车道线识别
3.13.3 车辆计数
3.13.4 车辆识别
3.13.5 车牌识别
3.13.6 车位识别
3.13.7 尺寸检测
3.13.8 答题卡识别
3.13.9 电器识别
3.13.10 跌倒检测
3.13.11 动物识别
3.13.12 二维码识别
3.13.13 发票识别
3.13.14 服装识别
3.13.15 汉字识别
3.13.16 红绿灯识别
3.13.17 虹膜识别
3.13.18 火灾检测
3.13.19 疾病分类
3.13.20 交通标志识别
3.13.21 卡号识别
3.13.22 口罩识别
3.13.23 裂缝识别
3.13.24 目标跟踪
3.13.25 疲劳检测
3.13.26 旗帜识别
3.13.27 青草识别
3.13.28 人脸识别
3.13.29 人民币识别
3.13.30 身份证识别
3.13.31 手势识别
3.13.32 数字字母识别
3.13.33 手掌识别
3.13.34 树叶识别
3.13.35 水果识别
3.13.36 条形码识别
3.13.37 温度检测
3.13.38 瑕疵检测
3.13.39 芯片检测
3.13.40 行为识别
3.13.41 验证码识别
3.13.42 药材识别
3.13.43 硬币识别
3.13.44 邮政编码识别
3.13.45 纸牌识别
3.13.46 指纹识别
3.14 图像修复
3.15 图像压缩
3.16 图像隐写
3.17 图像增强
3.18 图像重建
4 路径规划方面
4.1 旅行商问题(TSP)
4.1.1 单旅行商问题(TSP)
4.1.2 多旅行商问题(MTSP)
4.2 车辆路径问题(VRP)
4.2.1 车辆路径问题(VRP)
4.2.2 带容量的车辆路径问题(CVRP)
4.2.3 带容量+时间窗+距离车辆路径问题(DCTWVRP)
4.2.4 带容量+距离车辆路径问题(DCVRP)
4.2.5 带距离的车辆路径问题(DVRP)
4.2.6 带充电站+时间窗车辆路径问题(ETWVRP)
4.2.3 带多种容量的车辆路径问题(MCVRP)
4.2.4 带距离的多车辆路径问题(MDVRP)
4.2.5 同时取送货的车辆路径问题(SDVRP)
4.2.6 带时间窗+容量的车辆路径问题(TWCVRP)
4.2.6 带时间窗的车辆路径问题(TWVRP)
4.3 多式联运运输问题
4.4 机器人路径规划
4.4.1 避障路径规划
4.4.2 迷宫路径规划
4.4.3 栅格地图路径规划
4.5 配送路径规划
4.5.1 冷链配送路径规划
4.5.2 外卖配送路径规划
4.5.3 口罩配送路径规划
4.5.4 药品配送路径规划
4.5.5 含充电站配送路径规划
4.5.6 连锁超市配送路径规划
4.5.7 车辆协同无人机配送路径规划
4.6 无人机路径规划
4.6.1 飞行器仿真
4.6.2 无人机飞行作业
4.6.3 无人机轨迹跟踪
4.6.4 无人机集群仿真
4.6.5 无人机三维路径规划
4.6.6 无人机编队
4.6.7 无人机协同任务
4.6.8 无人机任务分配
5 语音处理
5.1 语音情感识别
5.2 声源定位
5.3 特征提取
5.4 语音编码
5.5 语音处理
5.6 语音分离
5.7 语音分析
5.8 语音合成
5.9 语音加密
5.10 语音去噪
5.11 语音识别
5.12 语音压缩
5.13 语音隐藏
6 元胞自动机方面
6.1 元胞自动机病毒仿真
6.2 元胞自动机城市规划
6.3 元胞自动机交通流
6.4 元胞自动机气体
6.5 元胞自动机人员疏散
6.6 元胞自动机森林火灾
6.7 元胞自动机生命游戏
7 信号处理方面
7.1 故障信号诊断分析
7.1.1 齿轮损伤识别
7.1.2 异步电机转子断条故障诊断
7.1.3 滚动体内外圈故障诊断分析
7.1.4 电机故障诊断分析
7.1.5 轴承故障诊断分析
7.1.6 齿轮箱故障诊断分析
7.1.7 三相逆变器故障诊断分析
7.1.8 柴油机故障诊断
7.2 雷达通信
7.2.1 FMCW仿真
7.2.2 GPS抗干扰
7.2.3 雷达LFM
7.2.4 雷达MIMO
7.2.5 雷达测角
7.2.6 雷达成像
7.2.7 雷达定位
7.2.8 雷达回波
7.2.9 雷达检测
7.2.10 雷达数字信号处理
7.2.11 雷达通信
7.2.12 雷达相控阵
7.2.13 雷达信号分析
7.2.14 雷达预警
7.2.15 雷达脉冲压缩
7.2.16 天线方向图
7.2.17 雷达杂波仿真
7.3 生物电信号
7.3.1 肌电信号EMG
7.3.2 脑电信号EEG
7.3.3 心电信号ECG
7.3.4 心脏仿真
7.4 通信系统
7.4.1 DOA估计
7.4.2 LEACH协议
7.4.3 编码译码
7.4.4 变分模态分解
7.4.5 超宽带仿真
7.4.6 多径衰落仿真
7.4.7 蜂窝网络
7.4.8 管道泄漏
7.4.9 经验模态分解
7.4.10 滤波器设计
7.4.11 模拟信号传输
7.4.12 模拟信号调制
7.4.13 数字基带信号
7.4.14 数字信道
7.4.15 数字信号处理
7.4.16 数字信号传输
7.4.17 数字信号去噪
7.4.18 水声通信
7.4.19 通信仿真
7.4.20 无线传输
7.4.21 误码率仿真
7.4.22 现代通信
7.4.23 信道估计
7.4.24 信号检测
7.4.25 信号融合
7.4.26 信号识别
7.4.27 压缩感知
7.4.28 噪声仿真
7.4.29 噪声干扰
7.5 无人机通信
7.6 无线传感器定位及布局方面
7.6.1 WSN定位
7.6.2 高度预估
7.6.3 滤波跟踪
7.6.4 目标定位
7.6.4.1 Dv-Hop定位
7.6.4.2 RSSI定位
7.6.4.3 智能算法优化定位
7.6.5 组合导航
8 电力系统方面
微电网优化、无功优化、配电网重构、储能配置