【图像压缩】二叉树和优化截断(BTOT)遥感图像压缩【含Matlab源码 2043期】

💥💥💞💞欢迎来到Matlab仿真科研站博客之家💞💞💥💥

✅博主简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,Matlab项目合作可私信。

🍎个人主页:Matlab仿真科研站博客之家

🏆代码获取方式:
💥扫描文章底部QQ二维码💥

⛳️座右铭:行百里者,半于九十;路漫漫其修远兮,吾将上下而求索。
在这里插入图片描述

⛄更多Matlab图像处理(仿真科研站版)仿真内容点击👇
Matlab图像处理(仿真科研站版)

⛄一、二叉树图像压缩简介

数字图像处理和编码压缩技术经过几十年的发展 , 已逐渐成熟并应用于数字通讯和信息处理之中。 随着计算机图形学和图像处理技术广泛应用到了工业生产的各个部门,对图像压缩技术提出了更高的要求。 如何充分利用图像分析和理解方法,合理地分解图像信号、提高压缩 比、降低 主观失真度 ,是当前图像编码研究的热门之一 。 新近在数字图像处理领域提 出的根据图像 区 域灰度分布特点 , 在二叉树管理之下 , 以一定的误差限度为准则,采用 四向递归二分法,逐渐将图像表面划分为若干个凸多边形,使之逼近原始图像,可获得较好的压缩效果。当多边形数目足够多时 ,它们的周边可体现图像的边缘特点,它们的形状、位置和平均灰度可反映图像的主要特点 , 通过对多边形 的平均灰度和划分方法进行编码,可以获得较高的压缩比。 基于上述思想的编码流程如下:
在这里插入图片描述
首先将原始图像经去噪等适当的预处理后,按四向递归二分法对图像进行分割,得到许多凸多边形,然后对它们进行编码,以便最大限度地压缩数据 。 经信道传输将数据送到地面后,对数据进行解码, 由解码后的数据重建图像并进行必要的后处理。图像的分割设原图为,可通过最小平方误差准则及四向递归二分法将图像分为和两个子图,使
在这里插入图片描述
为最小,其中为区域内图像灰度的均值。 对、作同样的分割,如此下去可在满足给定误差要求的条件下将分割成个子图。 编码、解码及后处理图像分割过程的规律性和递归性不仅简化了运算,也提高了编码的效率, 对最终的叶节点采用霍夫曼编码, 对中间的内节点采用变字长编码 。 此编码方法以多边形代替原图中相关性较 强的区域 , 其基本出发点仍是信源的统计特性和冗余度 。 图像分割采用非线性方法,结合视觉特性 ,考虑人类对方向的敏感性及纹理特性,以几何失真代替量化失真 ,可获得较好的主观质量和编码效率,提高了压缩 比。 按约定解码后,当用灰度的均值填充多边形后,代替原 图灰度会产生较明显的块状效应,此时可对相邻多边形的边界进行必要的灰度平滑处理,提高信噪比和视觉效果。 区域基图像编码方法,适应处理井下图像 ,压缩比较大时仍能使图像质量较好 。 图像分解主要使用计算机图形学的多边形处理技术 , 便于硬件实现提 高速度 。 井下摄取的图像数据压缩后送回地面 , 可有效地减少传输的数据量 , 有利于实现实时处理。

⛄二、部分源代码

clc;clear;
%% ----------- Input ----------------
imname = ‘SanDiego.bmp’;
I_Orig = double(imread(imname));

[row, col] = size(I_Orig);
blksize = 64;

%% ----------- Wavelet Decomposition -------------
n_log = log2(row);
level = floor(n_log);
I_Dec = wavecdf97(I_Orig, level);

n_min = 1;
brates = [0.0625, 0.125, 0.25, 0.5, 1];

%% ----------- Coding ----------------
[out_code, blklen, n_max, n_min, out_S,out_R,out_N] = encode(I_Dec, blksize, n_min);

%% ----------- Decoding ----------------
disp([ ‘aa_BTOT_’ imname(1:end-4) ‘=[’]);
for rate=brates
I_DecR = decode(out_code, blklen, n_max, n_min, blksize, row, rate, out_S,out_R,out_N);

I_Rec = wavecdf97(I_DecR, -level);
MSE = sum(sum((I_Rec - I_Orig).^2))/(row*row);
PSNR = 10*log10(255*255/MSE);
disp([sprintf('%.4f',rate) ' ' sprintf('%.2f',PSNR)]);   

end
disp(‘];’);
figure
subplot(211)
imshow(I_Orig,[])
title(‘原图’)
subplot(212)
imshow( I_Rec,[] )
title(‘压缩图’)
function blkorder = get_blkorder(row,blksize)
%
% Morton scanning order
%

blkorder = int32([1,1]);
levsize = blksize;
while levsize < row
hor = blkorder;
vor = blkorder;
dor = blkorder;

hor(:,2) = hor(:,2) + levsize;
vor(:,1) = vor(:,1) + levsize;
dor(:,1) = dor(:,1) + levsize;
dor(:,2) = dor(:,2) + levsize;

blkorder = [blkorder; hor; vor; dor];
levsize = levsize*2;

end

⛄三、运行结果

在这里插入图片描述

⛄四、matlab版本及参考文献

1 matlab版本
2014a

2 参考文献
[1] 冯桂,林其伟.基于区域二叉树压缩方法在井下图像数据处理中的应用[J].1997年中国地球物理学会第十三届学术年会论文集.

3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除

🍅 仿真咨询
1 各类智能优化算法改进及应用

1.1 PID优化
1.2 VMD优化
1.3 配电网重构
1.4 三维装箱
1.5 微电网优化
1.6 优化布局
1.7 优化参数
1.8 优化成本
1.9 优化充电
1.10 优化调度
1.11 优化电价
1.12 优化发车
1.13 优化分配
1.14 优化覆盖
1.15 优化控制
1.16 优化库存
1.17 优化路由
1.18 优化设计
1.19 优化位置
1.20 优化吸波
1.21 优化选址
1.22 优化运行
1.23 优化指派
1.24 优化组合
1.25 车间调度
1.26 生产调度
1.27 经济调度
1.28 装配线调度
1.29 水库调度
1.30 货位优化
1.31 公交排班优化
1.32 集装箱船配载优化
1.33 水泵组合优化
1.34 医疗资源分配优化
1.35 可视域基站和无人机选址优化

2 机器学习和深度学习分类与预测
2.1 机器学习和深度学习分类
2.1.1 BiLSTM双向长短时记忆神经网络分类
2.1.2 BP神经网络分类
2.1.3 CNN卷积神经网络分类
2.1.4 DBN深度置信网络分类
2.1.5 DELM深度学习极限学习机分类
2.1.6 ELMAN递归神经网络分类
2.1.7 ELM极限学习机分类
2.1.8 GRNN广义回归神经网络分类
2.1.9 GRU门控循环单元分类
2.1.10 KELM混合核极限学习机分类
2.1.11 KNN分类
2.1.12 LSSVM最小二乘法支持向量机分类
2.1.13 LSTM长短时记忆网络分类
2.1.14 MLP全连接神经网络分类
2.1.15 PNN概率神经网络分类
2.1.16 RELM鲁棒极限学习机分类
2.1.17 RF随机森林分类
2.1.18 SCN随机配置网络模型分类
2.1.19 SVM支持向量机分类
2.1.20 XGBOOST分类

2.2 机器学习和深度学习预测
2.2.1 ANFIS自适应模糊神经网络预测
2.2.2 ANN人工神经网络预测
2.2.3 ARMA自回归滑动平均模型预测
2.2.4 BF粒子滤波预测
2.2.5 BiLSTM双向长短时记忆神经网络预测
2.2.6 BLS宽度学习神经网络预测
2.2.7 BP神经网络预测
2.2.8 CNN卷积神经网络预测
2.2.9 DBN深度置信网络预测
2.2.10 DELM深度学习极限学习机预测
2.2.11 DKELM回归预测
2.2.12 ELMAN递归神经网络预测
2.2.13 ELM极限学习机预测
2.2.14 ESN回声状态网络预测
2.2.15 FNN前馈神经网络预测
2.2.16 GMDN预测
2.2.17 GMM高斯混合模型预测
2.2.18 GRNN广义回归神经网络预测
2.2.19 GRU门控循环单元预测
2.2.20 KELM混合核极限学习机预测
2.2.21 LMS最小均方算法预测
2.2.22 LSSVM最小二乘法支持向量机预测
2.2.23 LSTM长短时记忆网络预测
2.2.24 RBF径向基函数神经网络预测
2.2.25 RELM鲁棒极限学习机预测
2.2.26 RF随机森林预测
2.2.27 RNN循环神经网络预测
2.2.28 RVM相关向量机预测
2.2.29 SVM支持向量机预测
2.2.30 TCN时间卷积神经网络预测
2.2.31 XGBoost回归预测
2.2.32 模糊预测
2.2.33 奇异谱分析方法SSA时间序列预测

2.3 机器学习和深度学习实际应用预测
CPI指数预测、PM2.5浓度预测、SOC预测、财务预警预测、产量预测、车位预测、虫情预测、带钢厚度预测、电池健康状态预测、电力负荷预测、房价预测、腐蚀率预测、故障诊断预测、光伏功率预测、轨迹预测、航空发动机寿命预测、汇率预测、混凝土强度预测、加热炉炉温预测、价格预测、交通流预测、居民消费指数预测、空气质量预测、粮食温度预测、气温预测、清水值预测、失业率预测、用电量预测、运输量预测、制造业采购经理指数预测

3 图像处理方面
3.1 图像边缘检测
3.2 图像处理
3.3 图像分割
3.4 图像分类
3.5 图像跟踪
3.6 图像加密解密
3.7 图像检索
3.8 图像配准
3.9 图像拼接
3.10 图像评价
3.11 图像去噪
3.12 图像融合
3.13 图像识别
3.13.1 表盘识别
3.13.2 车道线识别
3.13.3 车辆计数
3.13.4 车辆识别
3.13.5 车牌识别
3.13.6 车位识别
3.13.7 尺寸检测
3.13.8 答题卡识别
3.13.9 电器识别
3.13.10 跌倒检测
3.13.11 动物识别
3.13.12 二维码识别
3.13.13 发票识别
3.13.14 服装识别
3.13.15 汉字识别
3.13.16 红绿灯识别
3.13.17 虹膜识别
3.13.18 火灾检测
3.13.19 疾病分类
3.13.20 交通标志识别
3.13.21 卡号识别
3.13.22 口罩识别
3.13.23 裂缝识别
3.13.24 目标跟踪
3.13.25 疲劳检测
3.13.26 旗帜识别
3.13.27 青草识别
3.13.28 人脸识别
3.13.29 人民币识别
3.13.30 身份证识别
3.13.31 手势识别
3.13.32 数字字母识别
3.13.33 手掌识别
3.13.34 树叶识别
3.13.35 水果识别
3.13.36 条形码识别
3.13.37 温度检测
3.13.38 瑕疵检测
3.13.39 芯片检测
3.13.40 行为识别
3.13.41 验证码识别
3.13.42 药材识别
3.13.43 硬币识别
3.13.44 邮政编码识别
3.13.45 纸牌识别
3.13.46 指纹识别

3.14 图像修复
3.15 图像压缩
3.16 图像隐写
3.17 图像增强
3.18 图像重建

4 路径规划方面
4.1 旅行商问题(TSP)
4.1.1 单旅行商问题(TSP)
4.1.2 多旅行商问题(MTSP)
4.2 车辆路径问题(VRP)
4.2.1 车辆路径问题(VRP)
4.2.2 带容量的车辆路径问题(CVRP)
4.2.3 带容量+时间窗+距离车辆路径问题(DCTWVRP)
4.2.4 带容量+距离车辆路径问题(DCVRP)
4.2.5 带距离的车辆路径问题(DVRP)
4.2.6 带充电站+时间窗车辆路径问题(ETWVRP)
4.2.3 带多种容量的车辆路径问题(MCVRP)
4.2.4 带距离的多车辆路径问题(MDVRP)
4.2.5 同时取送货的车辆路径问题(SDVRP)
4.2.6 带时间窗+容量的车辆路径问题(TWCVRP)
4.2.6 带时间窗的车辆路径问题(TWVRP)
4.3 多式联运运输问题

4.4 机器人路径规划
4.4.1 避障路径规划
4.4.2 迷宫路径规划
4.4.3 栅格地图路径规划

4.5 配送路径规划
4.5.1 冷链配送路径规划
4.5.2 外卖配送路径规划
4.5.3 口罩配送路径规划
4.5.4 药品配送路径规划
4.5.5 含充电站配送路径规划
4.5.6 连锁超市配送路径规划
4.5.7 车辆协同无人机配送路径规划

4.6 无人机路径规划
4.6.1 飞行器仿真
4.6.2 无人机飞行作业
4.6.3 无人机轨迹跟踪
4.6.4 无人机集群仿真
4.6.5 无人机三维路径规划
4.6.6 无人机编队
4.6.7 无人机协同任务
4.6.8 无人机任务分配

5 语音处理
5.1 语音情感识别
5.2 声源定位
5.3 特征提取
5.4 语音编码
5.5 语音处理
5.6 语音分离
5.7 语音分析
5.8 语音合成
5.9 语音加密
5.10 语音去噪
5.11 语音识别
5.12 语音压缩
5.13 语音隐藏

6 元胞自动机方面
6.1 元胞自动机病毒仿真
6.2 元胞自动机城市规划
6.3 元胞自动机交通流
6.4 元胞自动机气体
6.5 元胞自动机人员疏散
6.6 元胞自动机森林火灾
6.7 元胞自动机生命游戏

7 信号处理方面
7.1 故障信号诊断分析
7.1.1 齿轮损伤识别
7.1.2 异步电机转子断条故障诊断
7.1.3 滚动体内外圈故障诊断分析
7.1.4 电机故障诊断分析
7.1.5 轴承故障诊断分析
7.1.6 齿轮箱故障诊断分析
7.1.7 三相逆变器故障诊断分析
7.1.8 柴油机故障诊断

7.2 雷达通信
7.2.1 FMCW仿真
7.2.2 GPS抗干扰
7.2.3 雷达LFM
7.2.4 雷达MIMO
7.2.5 雷达测角
7.2.6 雷达成像
7.2.7 雷达定位
7.2.8 雷达回波
7.2.9 雷达检测
7.2.10 雷达数字信号处理
7.2.11 雷达通信
7.2.12 雷达相控阵
7.2.13 雷达信号分析
7.2.14 雷达预警
7.2.15 雷达脉冲压缩
7.2.16 天线方向图
7.2.17 雷达杂波仿真

7.3 生物电信号
7.3.1 肌电信号EMG
7.3.2 脑电信号EEG
7.3.3 心电信号ECG
7.3.4 心脏仿真

7.4 通信系统
7.4.1 DOA估计
7.4.2 LEACH协议
7.4.3 编码译码
7.4.4 变分模态分解
7.4.5 超宽带仿真
7.4.6 多径衰落仿真
7.4.7 蜂窝网络
7.4.8 管道泄漏
7.4.9 经验模态分解
7.4.10 滤波器设计
7.4.11 模拟信号传输
7.4.12 模拟信号调制
7.4.13 数字基带信号
7.4.14 数字信道
7.4.15 数字信号处理
7.4.16 数字信号传输
7.4.17 数字信号去噪
7.4.18 水声通信
7.4.19 通信仿真
7.4.20 无线传输
7.4.21 误码率仿真
7.4.22 现代通信
7.4.23 信道估计
7.4.24 信号检测
7.4.25 信号融合
7.4.26 信号识别
7.4.27 压缩感知
7.4.28 噪声仿真
7.4.29 噪声干扰

7.5 无人机通信

7.6 无线传感器定位及布局方面
7.6.1 WSN定位
7.6.2 高度预估
7.6.3 滤波跟踪
7.6.4 目标定位
7.6.4.1 Dv-Hop定位
7.6.4.2 RSSI定位
7.6.4.3 智能算法优化定位
7.6.5 组合导航

8 电力系统方面
微电网优化、无功优化、配电网重构、储能配置

9 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长

10 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

文章作者写的matlab源代码,该文章发表在Digital Signal Processing: Ke-Kun Huang , Hui Liu, Chuan-Xian Ren, Yu-Feng Yu and Zhao-Rong Lai. Remote sensing image compression based on binary tree and optimized truncation. Digital Signal Processing, vol. 64, pp. 96-106, 2017. (http://dx.doi.org/10.1016/j.dsp.2017.02.008) 遥感图像数据非常广泛,因此需要通过空间设备上的低复杂度算法进行压缩。具有自适应扫描顺序(BTCA)的二叉树编码是一个的有效算法。然而,对于大规模遥感图像,BTCA需要大量的内存,而且不能随机存取。在本文中,我们提出了一种基于BTCA的新的编码方法。小波图像首先划分为几个块,并由BTCA单独编码的。根据BTCA的属性,仔细选择每个块的有效截断点,以优化速率失真的比例,从而获得更高的压缩比、更低的内存要求随机访问性能。由于没有任何熵编码,所提出的方法简单快速,非常适合于空间设备。对三个遥感图像集进行实验,结果表明它可以显着提高PSNR、SSIMVIF,以及主观视觉体验。 The remote sensing image data is so vast that it requires compression by low-complexity algorithm on space-borne equipment. Binary tree coding with adaptive scanning order (BTCA) is an effective algorithm for the mission. However, for large-scale remote sensing images, BTCA requires a lot of memory, and does not provide random access property. In this paper, we propose a new coding method based on BTCA and optimize truncation. The wavelet image is first divided into several blocks which are encoded individually by BTCA. According the property of BTCA, we select the valid truncation points for each block carefully to optimize the ratio of rate-distortion, so that a higher compression ratio, lower memory requirement and random access property are attained. Without any entropy coding, the proposed method is simple and fast, which is very suitable for space-borne equipment. Experiments are conducted on three remote sensing image sets, and the results show that it can significantly improve PSNR, SSIM and VIF, as well as subjective visual experience.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值