💥💥💞💞欢迎来到Matlab仿真科研站博客之家💞💞💥💥
✅博主简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,Matlab项目合作可私信。
🍎个人主页:Matlab仿真科研站博客之家
🏆代码获取方式:
💥扫描文章底部QQ二维码💥
⛳️座右铭:行百里者,半于九十;路漫漫其修远兮,吾将上下而求索。

⛄更多Matlab图像处理(仿真科研站版)仿真内容点击👇
Matlab图像处理(仿真科研站版)
⛄一、小波变换图像融合技术简介
0 引言
每种图像拼接技术都有着不同的优势及场景,很多的数字图像拼接处理技术存在前景断裂、重影鬼影等质量问题,也无法满足人们对高质量视觉需求,基于改进的 SURF 图像匹配算法优化后的缝合线图像拼接方法,建立起一套有效全景图像拼接系统,可解决计算复杂、计算量大和误匹配等问题。
1 图像拼接流程
(1)图像序列输入。对图像数据信息进行采集时,会对后续图像配准精度及融合效果产生影响。多采用相机、手机等图像拍摄工具获取到局部序列图像,要根据摄像位置差异划分发为固定、移动拍摄方式,固定拍摄确保不根据设定好的中心轴来旋转,转旋角度拍摄则无法有效保持重叠区域有效对齐。图像融合采用空间变换使其置于同一平面;移动拍摄可采用平移和自由方式,平移是经过一定间隔并通过水平移动镜头来进行拍摄,自由拍摄不限制拍摄方式,要确保拍摄图像中存在一定比例的重叠区域。
(2)图像预处理。在对图像进行捕获时可能会有非均匀光照等影响因素,导致图像产生模糊、噪声等问题,直接影响着图像匹配精度和效率,可采用图像预处理技术改善图像质量。图像噪声均可通过多种滤波来进行优化与改进。针对图像模糊失真等现象,小波分解会使图像质量得到增强与提升,两幅邻近图象亮度间差异变大会导致融合以后的图像产生进过渡带,拼效以后的效果并没有达到要求,进行拼接融合、颜色校正来提升图像亮度感,也可以优化图像质量。
(3)图像配准。对全景图像进行拼接环节中最重要的就是图像配准,可以得到图像间对应关系,进行转变并形成相同坐标系。图像配准实质上为对变换参数进行求解的全过程,在不同情况下的图像分辨率、灰度值等都存在着较大的不同,通过图像配准可以进一步减小差异性,因此,图像配准精确度会对图像拼接质量产生一定程度的影响。
(4)图像融合。对全景图像拼像最为核心的环节就是图像融合,针对会对图像质量带来很大的影响。图像空间变换是建立起几何变换模型,得到不同像素点间的对应关系,进行图像变换以后可确定出对齐重叠区域,并对重叠区域进行平滑过渡,可以确保视觉的连续性与一致性。
2 图像配准
2.1 频域匹配
通过傅里叶变换把图像函数换转到频域再进行计算,可以得到图像间平移参数。fr(x,y)为参考图像,ft(x,y)为目标图像,两图像在时域空间上应满足要求。

上式中 x0、y0为横、纵轴方向的平移量。

上式中 Fr(u,v)、Ft(u,v)为上面两函数的傅里叶变换。
两图像互功率谱公式为:

对傅里叶进行反变换以后,可得计算出相位函数,如式:

可以在(x0,y0)位置得到最大值,也为平移位置。
采用频域匹配方法不需要太多的计算量,有着很高的精度,但需要待匹配图像存在着较多的重叠区域,图像差异会引起函数能量扩散,会存在着较多的峰尖,无法准确确定出平移矢量。
2.2 匹域匹配
采用灰度信息及模板搜索相互匹配的办法,可建立起重叠区域代价函数,再确定位置参数。可采用平均绝对值、序列相似性等算法。采用区域匹配办法进行改进与优化,可建立起相似性代价函数,有效优化和提升图像匹配效果,不可以使匹配图像亮度存在太大的差异,有着较大的计算量,不可应用于非线性变换。
应用图像典型特征匹配处理办法,应该获取到边缘、轮廓等曲型特征参数,点特征算法有着很好的适用性和较高的鲁棒性,通过特征提取算法来获取到图像中的特征点,通过信息描述可获取到特征点描述子,然后采用匹配方法来建立起不同点间的对应关系,采用变换模型进行计算来确定出参数,两个匹配图像的映射关系就被建立起来。
3 图像融合
3.1 图像空间变换模型
获取到两幅将要进行拼接的图像特征点,根据对应关系建立起两幅图像的映射关系,便可以形成单应性矩阵,通过变换处理手段将处理完成后的图像投射到相同平面,可采用刚性变换模型、投影变换模型等。
3.2 重叠区域融合
全景数字图像可达到的视觉感受情况与重叠区域域融合有着直接的联系,尽量保证重叠区域自然过渡,主要的融合方法有:
(1)线性融合
采用直接平均融合方法,对图像融合重叠区域中每个对应像素点灰度值进行求和再进于平均处理,可用于融合处理以后的像素点灰度值。

上式中 Ir、It为待融合图像的函数,I 为处理后的函数。
对函数表达式进行优化与改进以后,灰度值先进行加权再求得后进行平均处理。

线性融合不需要太复杂的处理流程,也不需要太多的计算理,可应用于对速度有高要求的场所,如果重叠区域无法对齐或具有较多的复杂纹理,进行融合拼接后会存在重影等问题,达不到视觉效果要求。
(2)均值滤波融合
视觉效果不理想可通过非线性处理办法,多用于在重叠区域处理像素点灰度不连续现象。

上式中 IC为图像融合以后重叠区域,(x,y)为中心像素点坐标,s 为像素点邻近区域,N 为像素点个数。
采用均值滤波可解决非均匀光照、残影重影等现象,有利于提升全景图像视觉效果,采用模糊图像处理方式可获取到轮廓、边缘等部位的信息,但可应用的场景并不多。
(3)多分辨率样条融合
把图像分解成多个不同分辨率子图像,再对子图像进行融合,可以把子图像进行逆转换处理为融合图像,具体见图 1所示。

图 1 多分辨率样条融合图
可采用拉普拉斯金字塔融合等办法,是以拉普拉斯塔形结构作为基础的一种算法,对每层都进行融合,以图像分解上的每个频率来对重叠区域进行嘈 合,来对金字塔进行重构。

上式中 LI 为进行融合处理后的拉普拉斯金字塔,LIx、LIt为融合处理以前的金字塔,GR为对重叠区域进行掩膜处理以后的金字塔。
通过金字塔融合可以与线性融合法进行结合,使更多的图像细节得以保留,有效消除图像拼接痕迹,可收于拉普拉斯金字塔需要较大的计算量,还要进行很多处理步骤,并不适用于对拼接速度有着较高要求的场所。小波变换融合与拉普拉斯较为相近,可分解成多个不同频率子图像,还具有更快的处理速度。
(4)泊松融合
结合泊松方程来设计图像拼接融合算法,于梯度最接近位置把融合图像填置于背景图像,进行梯度变化最小值进行。

可对两张图像进行很好地融合,图像拼接部位不明显,可达以对梯度变化一致性的需要,图像中每个像素点都可以采用泊松方程来计算出插值,同样需要较大的计算量,还需要花费较长的时间,但在数据量大、高速度运行的场景中无法使用。
⛄二、部分源代码
clc;
clear all;
close all
img1 = imread(‘left.png’);
img2 = imread(‘right.png’);
img1Dup=rgb2gray(img1);%将img1转化为灰度图像
figure,imshow(img1Dup);
img1Dup=double(img1Dup);
img2Dup=rgb2gray(img2);%将img2转化为灰度图像
figure,imshow(img2Dup);
img2Dup=double(img2Dup);
% 在两幅图像中使用Harris查找角点
[locs1] = Harris(img1Dup);
[locs2] = Harris(img2Dup);
%using NCC to find coorespondence between two images
[matchLoc1 matchLoc2] = findCorr(img1Dup,img2Dup,locs1, locs2);
% use RANSAC to find homography matrix
[H inlierIdx] = estHomography(img1Dup,img2Dup,matchLoc2’,matchLoc1’);
H %#ok
[imgout]=warpTheImage(H,img1,img2);
%imshow(imgout);title(‘final image’);
figure,imshow(uint8(imgout));
imwrite(uint8(imgout), ‘pic_pinjie.jpg’, ‘jpg’);
⛄三、运行结果





⛄四、matlab版本及参考文献
1 matlab版本
2014a
2 参考文献
[1]管娜.基于计算机视觉的图像拼接技术研究[J].长江信息通信. 2022,35(07)
3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除
🍅 仿真咨询
1 各类智能优化算法改进及应用
1.1 PID优化
1.2 VMD优化
1.3 配电网重构
1.4 三维装箱
1.5 微电网优化
1.6 优化布局
1.7 优化参数
1.8 优化成本
1.9 优化充电
1.10 优化调度
1.11 优化电价
1.12 优化发车
1.13 优化分配
1.14 优化覆盖
1.15 优化控制
1.16 优化库存
1.17 优化路由
1.18 优化设计
1.19 优化位置
1.20 优化吸波
1.21 优化选址
1.22 优化运行
1.23 优化指派
1.24 优化组合
1.25 车间调度
1.26 生产调度
1.27 经济调度
1.28 装配线调度
1.29 水库调度
1.30 货位优化
1.31 公交排班优化
1.32 集装箱船配载优化
1.33 水泵组合优化
1.34 医疗资源分配优化
1.35 可视域基站和无人机选址优化
2 机器学习和深度学习分类与预测
2.1 机器学习和深度学习分类
2.1.1 BiLSTM双向长短时记忆神经网络分类
2.1.2 BP神经网络分类
2.1.3 CNN卷积神经网络分类
2.1.4 DBN深度置信网络分类
2.1.5 DELM深度学习极限学习机分类
2.1.6 ELMAN递归神经网络分类
2.1.7 ELM极限学习机分类
2.1.8 GRNN广义回归神经网络分类
2.1.9 GRU门控循环单元分类
2.1.10 KELM混合核极限学习机分类
2.1.11 KNN分类
2.1.12 LSSVM最小二乘法支持向量机分类
2.1.13 LSTM长短时记忆网络分类
2.1.14 MLP全连接神经网络分类
2.1.15 PNN概率神经网络分类
2.1.16 RELM鲁棒极限学习机分类
2.1.17 RF随机森林分类
2.1.18 SCN随机配置网络模型分类
2.1.19 SVM支持向量机分类
2.1.20 XGBOOST分类
2.2 机器学习和深度学习预测
2.2.1 ANFIS自适应模糊神经网络预测
2.2.2 ANN人工神经网络预测
2.2.3 ARMA自回归滑动平均模型预测
2.2.4 BF粒子滤波预测
2.2.5 BiLSTM双向长短时记忆神经网络预测
2.2.6 BLS宽度学习神经网络预测
2.2.7 BP神经网络预测
2.2.8 CNN卷积神经网络预测
2.2.9 DBN深度置信网络预测
2.2.10 DELM深度学习极限学习机预测
2.2.11 DKELM回归预测
2.2.12 ELMAN递归神经网络预测
2.2.13 ELM极限学习机预测
2.2.14 ESN回声状态网络预测
2.2.15 FNN前馈神经网络预测
2.2.16 GMDN预测
2.2.17 GMM高斯混合模型预测
2.2.18 GRNN广义回归神经网络预测
2.2.19 GRU门控循环单元预测
2.2.20 KELM混合核极限学习机预测
2.2.21 LMS最小均方算法预测
2.2.22 LSSVM最小二乘法支持向量机预测
2.2.23 LSTM长短时记忆网络预测
2.2.24 RBF径向基函数神经网络预测
2.2.25 RELM鲁棒极限学习机预测
2.2.26 RF随机森林预测
2.2.27 RNN循环神经网络预测
2.2.28 RVM相关向量机预测
2.2.29 SVM支持向量机预测
2.2.30 TCN时间卷积神经网络预测
2.2.31 XGBoost回归预测
2.2.32 模糊预测
2.2.33 奇异谱分析方法SSA时间序列预测
2.3 机器学习和深度学习实际应用预测
CPI指数预测、PM2.5浓度预测、SOC预测、财务预警预测、产量预测、车位预测、虫情预测、带钢厚度预测、电池健康状态预测、电力负荷预测、房价预测、腐蚀率预测、故障诊断预测、光伏功率预测、轨迹预测、航空发动机寿命预测、汇率预测、混凝土强度预测、加热炉炉温预测、价格预测、交通流预测、居民消费指数预测、空气质量预测、粮食温度预测、气温预测、清水值预测、失业率预测、用电量预测、运输量预测、制造业采购经理指数预测
3 图像处理方面
3.1 图像边缘检测
3.2 图像处理
3.3 图像分割
3.4 图像分类
3.5 图像跟踪
3.6 图像加密解密
3.7 图像检索
3.8 图像配准
3.9 图像拼接
3.10 图像评价
3.11 图像去噪
3.12 图像融合
3.13 图像识别
3.13.1 表盘识别
3.13.2 车道线识别
3.13.3 车辆计数
3.13.4 车辆识别
3.13.5 车牌识别
3.13.6 车位识别
3.13.7 尺寸检测
3.13.8 答题卡识别
3.13.9 电器识别
3.13.10 跌倒检测
3.13.11 动物识别
3.13.12 二维码识别
3.13.13 发票识别
3.13.14 服装识别
3.13.15 汉字识别
3.13.16 红绿灯识别
3.13.17 虹膜识别
3.13.18 火灾检测
3.13.19 疾病分类
3.13.20 交通标志识别
3.13.21 卡号识别
3.13.22 口罩识别
3.13.23 裂缝识别
3.13.24 目标跟踪
3.13.25 疲劳检测
3.13.26 旗帜识别
3.13.27 青草识别
3.13.28 人脸识别
3.13.29 人民币识别
3.13.30 身份证识别
3.13.31 手势识别
3.13.32 数字字母识别
3.13.33 手掌识别
3.13.34 树叶识别
3.13.35 水果识别
3.13.36 条形码识别
3.13.37 温度检测
3.13.38 瑕疵检测
3.13.39 芯片检测
3.13.40 行为识别
3.13.41 验证码识别
3.13.42 药材识别
3.13.43 硬币识别
3.13.44 邮政编码识别
3.13.45 纸牌识别
3.13.46 指纹识别
3.14 图像修复
3.15 图像压缩
3.16 图像隐写
3.17 图像增强
3.18 图像重建
4 路径规划方面
4.1 旅行商问题(TSP)
4.1.1 单旅行商问题(TSP)
4.1.2 多旅行商问题(MTSP)
4.2 车辆路径问题(VRP)
4.2.1 车辆路径问题(VRP)
4.2.2 带容量的车辆路径问题(CVRP)
4.2.3 带容量+时间窗+距离车辆路径问题(DCTWVRP)
4.2.4 带容量+距离车辆路径问题(DCVRP)
4.2.5 带距离的车辆路径问题(DVRP)
4.2.6 带充电站+时间窗车辆路径问题(ETWVRP)
4.2.3 带多种容量的车辆路径问题(MCVRP)
4.2.4 带距离的多车辆路径问题(MDVRP)
4.2.5 同时取送货的车辆路径问题(SDVRP)
4.2.6 带时间窗+容量的车辆路径问题(TWCVRP)
4.2.6 带时间窗的车辆路径问题(TWVRP)
4.3 多式联运运输问题
4.4 机器人路径规划
4.4.1 避障路径规划
4.4.2 迷宫路径规划
4.4.3 栅格地图路径规划
4.5 配送路径规划
4.5.1 冷链配送路径规划
4.5.2 外卖配送路径规划
4.5.3 口罩配送路径规划
4.5.4 药品配送路径规划
4.5.5 含充电站配送路径规划
4.5.6 连锁超市配送路径规划
4.5.7 车辆协同无人机配送路径规划
4.6 无人机路径规划
4.6.1 飞行器仿真
4.6.2 无人机飞行作业
4.6.3 无人机轨迹跟踪
4.6.4 无人机集群仿真
4.6.5 无人机三维路径规划
4.6.6 无人机编队
4.6.7 无人机协同任务
4.6.8 无人机任务分配
5 语音处理
5.1 语音情感识别
5.2 声源定位
5.3 特征提取
5.4 语音编码
5.5 语音处理
5.6 语音分离
5.7 语音分析
5.8 语音合成
5.9 语音加密
5.10 语音去噪
5.11 语音识别
5.12 语音压缩
5.13 语音隐藏
6 元胞自动机方面
6.1 元胞自动机病毒仿真
6.2 元胞自动机城市规划
6.3 元胞自动机交通流
6.4 元胞自动机气体
6.5 元胞自动机人员疏散
6.6 元胞自动机森林火灾
6.7 元胞自动机生命游戏
7 信号处理方面
7.1 故障信号诊断分析
7.1.1 齿轮损伤识别
7.1.2 异步电机转子断条故障诊断
7.1.3 滚动体内外圈故障诊断分析
7.1.4 电机故障诊断分析
7.1.5 轴承故障诊断分析
7.1.6 齿轮箱故障诊断分析
7.1.7 三相逆变器故障诊断分析
7.1.8 柴油机故障诊断
7.2 雷达通信
7.2.1 FMCW仿真
7.2.2 GPS抗干扰
7.2.3 雷达LFM
7.2.4 雷达MIMO
7.2.5 雷达测角
7.2.6 雷达成像
7.2.7 雷达定位
7.2.8 雷达回波
7.2.9 雷达检测
7.2.10 雷达数字信号处理
7.2.11 雷达通信
7.2.12 雷达相控阵
7.2.13 雷达信号分析
7.2.14 雷达预警
7.2.15 雷达脉冲压缩
7.2.16 天线方向图
7.2.17 雷达杂波仿真
7.3 生物电信号
7.3.1 肌电信号EMG
7.3.2 脑电信号EEG
7.3.3 心电信号ECG
7.3.4 心脏仿真
7.4 通信系统
7.4.1 DOA估计
7.4.2 LEACH协议
7.4.3 编码译码
7.4.4 变分模态分解
7.4.5 超宽带仿真
7.4.6 多径衰落仿真
7.4.7 蜂窝网络
7.4.8 管道泄漏
7.4.9 经验模态分解
7.4.10 滤波器设计
7.4.11 模拟信号传输
7.4.12 模拟信号调制
7.4.13 数字基带信号
7.4.14 数字信道
7.4.15 数字信号处理
7.4.16 数字信号传输
7.4.17 数字信号去噪
7.4.18 水声通信
7.4.19 通信仿真
7.4.20 无线传输
7.4.21 误码率仿真
7.4.22 现代通信
7.4.23 信道估计
7.4.24 信号检测
7.4.25 信号融合
7.4.26 信号识别
7.4.27 压缩感知
7.4.28 噪声仿真
7.4.29 噪声干扰
7.5 无人机通信
7.6 无线传感器定位及布局方面
7.6.1 WSN定位
7.6.2 高度预估
7.6.3 滤波跟踪
7.6.4 目标定位
7.6.4.1 Dv-Hop定位
7.6.4.2 RSSI定位
7.6.4.3 智能算法优化定位
7.6.5 组合导航
8 电力系统方面
微电网优化、无功优化、配电网重构、储能配置
本文介绍了使用Matlab进行图像融合的方法,包括基于小波变换的图像预处理、频域和像素级匹配、图像配准过程,以及线性融合、均值滤波、多分辨率样条融合和泊松融合等融合技术。文章详细展示了从图像序列输入到融合效果的全过程,并提供了部分Matlab源代码示例。
406

被折叠的 条评论
为什么被折叠?



