✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
随着全球能源结构向清洁化、低碳化转型,以风能、太阳能为代表的可再生能源在微电网中的渗透率持续提升。然而,风能、太阳能具有间歇性、波动性和随机性的特点,给微电网的稳定运行和经济调度带来了严峻挑战。同时,传统微电网调度往往忽视用户侧的主动参与,导致能源资源配置效率低下,运行成本居高不下。
需求响应(Demand Response,DR)作为一种灵活的用户侧管理手段,能够通过价格信号或激励机制引导用户调整用电行为,平抑负荷峰谷差,提升可再生能源消纳能力。而粒子群优化(Particle Swarm Optimization,PSO)算法因具有收敛速度快、参数设置简单、鲁棒性强等优势,在复杂优化问题求解中表现突出。将 PSO 算法与需求响应相结合,应用于风光储能微电网日前经济调度,不仅能够降低微电网运行成本,还能提高能源利用效率和系统稳定性,对推动微电网规模化发展具有重要的理论价值和实际意义。
二、风光储能微电网系统结构与调度目标
(一)系统结构
计及需求响应的风光储能微电网系统主要由以下几部分组成:
- 可再生能源发电单元:包括风力发电机(Wind Turbine,WT)和光伏发电系统(Photovoltaic,PV),为微电网提供清洁电能;
- 储能系统(Energy Storage System,ESS):通常采用锂电池储能,用于平抑可再生能源出力波动、存储多余电能,在负荷高峰时释放电能,保障系统供需平衡;
- 常规电源:如微型燃气轮机(Micro Gas Turbine,MT),作为备用电源,在可再生能源出力不足或储能系统电量较低时补充供电;
- 用户侧负荷:分为可转移负荷、可削减负荷和不可控负荷,其中可转移负荷和可削减负荷可参与需求响应;
- 公共连接点(Point of Common Coupling,PCC):微电网与大电网进行电能交换的接口,当微电网内部电能供需失衡时,可通过 PCC 从大电网购电或向大电网售电(若政策允许)。






⛳️ 运行结果




🔗 参考文献
[1] 周浩,吴秋轩,李峰峰,等.基于Python语言的微电网监控软件设计与开发[C]//第27届中国控制与决策会议.0[2025-09-18].
[2] 李宁,董阿龙,田丽.微电网的日前调度[J].新余学院学报, 2019, 24(4):4.DOI:10.3969/j.issn.2095-3054.2019.04.009.
[3] 王若瑾.风光储直流微电网直流线路在线故障检测和定位方法研究[D].沈阳工业大学,2022.
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇
722

被折叠的 条评论
为什么被折叠?



