poj 1038 状态压缩~棋盘覆盖

本文介绍了一种使用三进制状态压缩动态规划解决特定问题的方法。通过将当前行和前一行的状态转换为三进制数,并利用滚动数组来节省空间,避免了内存溢出的问题。文章提供了完整的AC代码实现。

用三进制存当前行和前一行的状态,用滚动数组记录,不然会超空间。


ACcode:

#include<cstdio>
#include<cstring>
#include<cstdio>
#include<algorithm>
int const NS=10;
int const MS=150;
int const MAX=59049;
int const INF=1<<10;

int n,m,k,x,y,ans,T;
int bit[MAX+10][NS];
int g[MS],p3[NS+5];
int dp[2][MAX];

void prepare()
{
    p3[0]=1;
    for (int i=1;i<=NS;i++)
    p3[i]=p3[i-1]*3;
    for (int i=0;i<=MAX;i++)
    for (int t=i,j=0;j<NS;j++)
    bit[i][j]=t%3,t/=3;
}

int Max(int a1,int b1)
{
    return a1>b1?a1:b1;
}

void dfs(int pre,int now,int row,int pos,int sum)
{
    if (pos==m)
    {
        dp[k][now]=Max(dp[k][now],dp[k^1][pre]+sum);
        return ;
    }
    dfs(pre,now+(bit[row][pos]?(p3[pos]<<1):(bit[pre][pos]>1?p3[pos]:0)),row,pos+1,sum);
    if (pos+1<m&&(bit[pre][pos]+bit[pre][pos+1]+bit[row][pos]+bit[row][pos+1]==0))
    dfs(pre,now+((p3[pos]+p3[pos+1])<<1),row,pos+2,sum+1);
    if (pos+2<m&&bit[pre][pos]<2&&bit[pre][pos+1]<2&&bit[pre][pos+2]<2
        &&bit[row][pos]+bit[row][pos+1]+bit[row][pos+2]==0)
        dfs(pre,now+((p3[pos]+p3[pos+1]+p3[pos+2])<<1),row,pos+3,sum+1);
}

void init(int r)
{
    for (int i=0;i<p3[m];i++)
    dp[r][i]=-INF;
}

int main()
{
    prepare();
    scanf("%d",&T);
    while (T--)
    {
        scanf("%d%d%d",&n,&m,&k);
        memset(g,0,sizeof(g));
        for (int i=0;i<k;i++)
        {
            scanf("%d%d",&x,&y);
            x--,y--;
            g[x]+=p3[y];
        }
        ans=k=0,init(k);
        dp[k][g[0]+(p3[m]>>1)]=0;
        for (int i=1;i<n;i++)
        {
            k^=1,init(k);
            for (int j=0;j<p3[m];j++)
            if (dp[k^1][j]>-300)
            dfs(j,0,g[i],0,0);
        }
        for (int i=0;i<p3[m];i++)
        ans=Max(ans,dp[k][i]);
        printf("%d\n",ans);
    }
    return 0;
}


状压DP超详细教程:从入门到精通 状压DP状态压缩动态规划)是一种非常实用的算法技巧,特别适合处理状态可以用二进制表示的问题。下面我将用最详细、最系统的方式讲解这个技术,保证你能彻底理解。 一、状压DP的本质 1.1 什么是状态压缩状态压缩的核心思想是:用二进制位来表示某种状态。比如: 有5个灯泡:可以用5位二进制数表示它们的开关状态 10101表示第1、3、5个灯亮,2、4灭 有8个任务是否完成:可以用8位二进制数表示 11001001表示第1、2、5、8个任务已完成 1.2 为什么需要压缩状态? 传统DP在表示某些状态时会遇到困难。例如: 棋盘放置问题:要记录哪些格子被占用 任务分配问题:要记录哪些任务已被分配 路径问题:要记录哪些点已经访问过 如果用传统数组表示,可能需要多维数组,空间复杂度爆炸。而用二进制压缩,一个整数就能表示复杂的状态。 二、状压DP的三大组成部分 2.1 状态表示 用一个整数的二进制形式表示状态: 每一位代表一个元素的状态(选中/未选中,存在/不存在等) 整数范围:0到2ⁿ-1(n是元素个数) 示例:3个物品的选择状态 000(0):都没选 001(1):选第1个 010(2):选第2个 011(3):选第1、2个 ... 111(7):全选 2.2 状态转移 定义如何从一个状态转移到另一个状态,通常包括: 检查当前状态的某些位 根据条件修改某些位 生成新状态 2.3 DP数组设计 dp[state]或dp[state][i],其中: state是压缩后的状态 i可能是附加信息(如当前位置、已选数量等) 三、必须精通的位运算技巧 3.1 基本操作 操作 代码表示 示例(假设8位二进制) 设置第i位为1 `state (1 << i)` `0010 (1<<2) → 0110` 设置第i位为0 state & ~(1 << i) 0110 & ~(1<<2) → 0010 切换第i位 state ^ (1 << i) 0110 ^ (1<<2) → 0010 检查第i位是否为1 (state >> i) & 1 (0110 >> 2) & 1 → 1 3.2 高级技巧 枚举所有子集: cpp for(int subset = state; subset; subset = (subset-1)&state){ // 处理subset } 最低位的1: cpp int lowbit = x & -x; 统计1的个数: cpp int count = __builtin_popcount(state); // GCC内置函数 六、状压DP的优化技巧 6.1 预处理合法状态 很多问题中,大部分状态是不合法的,可以预先筛选: cpp vector<int> valid_states; for (int state = 0; state < (1 << n); ++state) { if (check(state)) { // 检查state是否合法 valid_states.push_back(state); } } 6.2 滚动数组优化 当状态只依赖前一个阶段时,可以节省空间: cpp vector<vector<int>> dp(2, vector<int>(size)); // 只保留当前和上一个状态 int now = 0, prev = 1; for (int i = 1; i <= n; ++i) { swap(now, prev); for (auto& state : valid_states) { dp[now][state] = 0; // 清空当前状态 // 状态转移... } } 6.3 记忆化搜索实现 有时递归形式更直观: cpp int memo[1<<20][20]; // 记忆化数组 int dfs(int state, int u) { if (memo[state][u] != -1) return memo[state][u]; // 递归处理... return memo[state][u] = res; } 七、常见问题与调试技巧 7.1 常见错误 位运算优先级:总是加括号,如(state & (1 << i)) 数组越界:状态数是2ⁿ,不是n 初始状态设置错误:比如TSP中dp[1][0] = 0 边界条件处理不当:如全选状态是(1<<n)-1,不是1<<n 7.2 调试建议 打印中间状态:将二进制状态转换为可视化的形式 cpp void printState(int state, int n) { for (int i = n-1; i >= 0; --i) cout << ((state >> i) & 1); cout << endl; } 从小规模测试用例开始(如n=3,4) 使用assert检查关键假设 八、学习路线建议 初级阶段: 练习基本位操作 解决简单状压问题(如LeetCode 464、526题) 中级阶段: 掌握经典模型(TSP、棋盘覆盖) 学习优化技巧(预处理、滚动数组) 高级阶段: 处理高维状压(如需要同时压缩多个状态) 结合其他算法(如BFS、双指针) 九、实战练习题目推荐 入门题: LeetCode 78. Subsets(理解状态表示) LeetCode 464. Can I Win(简单状压DP) 中等题: LeetCode 526. Beautiful Arrangement LeetCode 691. Stickers to Spell Word 经典题: POJ 2411. Mondriaan's Dream(棋盘覆盖) HDU 3001. Travelling(三进制状压) 挑战题: Codeforces 8C. Looking for Order Topcoder SRM 556 Div1 1000. LeftRightDigitsGame2 记住,掌握状压DP的关键在于: 彻底理解二进制状态表示 熟练运用位运算 通过大量练习培养直觉 希望这份超详细的教程能帮助你彻底掌握状压DP!如果还有任何不明白的地方,可以针对具体问题继续深入探讨。 请帮我转成markdown语法输出,谢谢
最新发布
08-13
六、状压DP的优化技巧 6.1 预处理合法状态 很多问题中,大部分状态是不合法的,可以预先筛选: cpp vector valid_states; for (int state = 0; state < (1 << n); ++state) { if (check(state)) { // 检查state是否合法 valid_states.push_back(state); } } 6.2 滚动数组优化 当状态只依赖前一个阶段时,可以节省空间: cpp vector<vector> dp(2, vector(size)); // 只保留当前和上一个状态 int now = 0, prev = 1; for (int i = 1; i <= n; ++i) { swap(now, prev); for (auto& state : valid_states) { dp[now][state] = 0; // 清空当前状态 // 状态转移… } } 6.3 记忆化搜索实现 有时递归形式更直观: cpp int memo[1<<20][20]; // 记忆化数组 int dfs(int state, int u) { if (memo[state][u] != -1) return memo[state][u]; // 递归处理… return memo[state][u] = res; } 七、常见问题与调试技巧 7.1 常见错误 位运算优先级:总是加括号,如(state & (1 << i)) 数组越界:状态数是2ⁿ,不是n 初始状态设置错误:比如TSP中dp[1][0] = 0 边界条件处理不当:如全选状态是(1<<n)-1,不是1<<n 7.2 调试建议 打印中间状态:将二进制状态转换为可视化的形式 cpp void printState(int state, int n) { for (int i = n-1; i >= 0; --i) cout << ((state >> i) & 1); cout << endl; } 从小规模测试用例开始(如n=3,4) 使用assert检查关键假设 八、学习路线建议 初级阶段: 练习基本位操作 解决简单状压问题(如LeetCode 464、526题) 中级阶段: 掌握经典模型(TSP、棋盘覆盖) 学习优化技巧(预处理、滚动数组) 高级阶段: 处理高维状压(如需要同时压缩多个状态) 结合其他算法(如BFS、双指针) 九、实战练习题目推荐 入门题: LeetCode 78. Subsets(理解状态表示) LeetCode 464. Can I Win(简单状压DP) 中等题: LeetCode 526. Beautiful Arrangement LeetCode 691. Stickers to Spell Word 经典题: POJ 2411. Mondriaan’s Dream(棋盘覆盖) HDU 3001. Travelling(三进制状压) 挑战题: Codeforces 8C. Looking for Order Topcoder SRM 556 Div1 1000. LeftRightDigitsGame2 记住,掌握状压DP的关键在于: 彻底理解二进制状态表示 熟练运用位运算 通过大量练习培养直觉 希望这份超详细的教程能帮助你彻底掌握状压DP!如果还有任何不明白的地方,可以针对具体问题继续深入探讨。 请帮我转成markdown语法输出,谢谢
08-13
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值