集训回顾

文章概述了大三学生参加了一个月的暑假集训经历,包括专题训练、个人赛和组队赛。作者反思了这段经历,认为尽管整体感觉良好,但可能在认识集训的重要性上有所不足。集训结束后,作者制定了近期的做题计划,旨在为接下来的学习和比赛做准备。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

转眼之间就开学了,大三了。

 暑假集训从7月13号开始,我8月27号回家,正好一个半月,开始时专题训练,然后是个人赛,然后是组队赛。

总的感觉还可以,不过现在回想这段时期好像感觉还是缺了点什么,可能是还是没有认识到这次暑假集训的重要性,拼劲还不够。

但是现在集训已经结束了,总结之后就要准备接下来的日常训练。

上课了,和队友一起做题的时间也少了,所以自己计划一下近期的做题计划。

1. WHUST 9 ~ 17 这9套题,从6号开始,除正常训练外,每天一套。

2. 

identity 身份认证 购VIP最低享 7 折! triangle vip 30元优惠券将在 04:24:36 后过期 去使用 triangle 数据可视化是将复杂的数据集通过图表、图像等视觉元素进行呈现,以便于人们更容易地理解和解读数据。在“数据可视化期末课设~学生成绩可视化分析.zip”这个压缩包中,我们可以看到一系列与数据可视化相关的资源,包括Jupyter代码、HTML图片、答辩PPT以及Word文档,这些内容涵盖了数据可视化的基础到高级应用,适合于完成一个全面的期末课程设计项目。 Jupyter代码是使用Python编程语言进行数据处理和可视化的主要工具。在这个项目中,学生可能使用了pandas库来加载和清洗数据,可能涉及到的数据处理步骤包括去除重复值、处理缺失值以及数据类型转换等。接着,他们可能使用matplotlib或seaborn库来创建各种图表,如直方图、散点图、箱线图等,以展示学生成绩的分布、对比和趋势。此外,更高级的可视化库如plotly或bokeh可能也被用来实现交互式图表,增加用户对数据的理解深度。 保存的HTML图片是Jupyter Notebook的输出结果,它展示了代码运行后的可视化效果。这些图片可以直观地揭示学生成绩的统计特征,例如平均分、标准差、最高分和最低分等。通过颜色编码或者图例,我们可以识别出不同科目或者不同班级的表现,帮助分析教学质量和学生学习情况。 答辩PPT则可能包含项目的概述、目的、方法、结果和结论。在PPT中,学生可能会详细阐述他们选择特定可视化方法的理由,如何解读图表,以及从数据中得出的洞察。此外,PPT的制作也是展示其表达和沟通能力的重要部分,要求清晰、有逻辑地组织信息。 Word文档可能是项目报告,详细记录了整个过程,包括数据来源、预处理步骤、使用的可视化技术、分析结果以及可能遇到的问题和解决方案。报告中的数据分析部分会详细解释图表背后的含义,例如通过对比不同学科的分数分布,找出哪些科目可能存在困难,或者分析成绩与特定因素(如性别、年级等)的关系。 这个压缩包提供了完整的数据可视化项目实例,涉及了数据获取、处理、可视化和解释的一系列步骤,对于学习和掌握数据可视化技能非常有价值。通过这样的练习,学生不仅能够提高编程技巧,还能培养数据驱动思维和问题解决能力,为未来从事数据分析或相关领域的工作打下坚实的基础。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值