React - 生命周期

本文深入解析React组件的三个生命周期状态:Mounting、Updating和Unmounting,重点介绍componentDidMount和componentWillUnmount方法的作用,以及如何在Clock组件中利用这两个方法实现时间实时更新。

React 组件的生命周期

组件的生命周期可分为3个状态:

  • Mounting:已插入真实 DOM
  • Updating:正在被重新渲染
  • Unmounting:已移出真实 DOM

生命周期的方法有:

  • componentWillMount:在渲染前调用,再客户单也在服务端。
  • componentDidMount:在第一次渲染后调用,只在客户端。之后组件已经生成了对应的 DOM 结构,可以通过【this.getDOMNode()】来进行访问。如果你想和其他Javascript框架一起使用,可以在这个方法中调用 setTimeout,setInterval 或者 AJAX 请求等操作(防止异步操作阻塞UI)

在具有许多组件的应用程序中,在销毁时释放组件所占用的资源非常重要。
比如,每当 Clock 组件第一次加载到 DOM 中,我们都想生成一个定时器,这在 React 中被称为【挂载】。
同样,每当 Clock 生成的 DOM 被移除时,我们也要清除定时器,这在 React 中称为【卸载】。

实现一个时间实时变化的实例:

class Clock extends React.Component {
    constructor(props) {
        super(props)
        this.state = { date: new Date() }
    }

    // 挂载
    componentDidMount() {
        this.timerID = setInterval(() => {
            this.tick()
        }, 1000)
    }

    // 卸载
    componentWillUnmount() {
        clearInterval(this.timerID)
    }

    tick() {
        this.setState({
            date: new Date()
        })
    }

    render() {
        return (
            <div>
                <h1>现在是:{this.state.date.toLocaleTimeString()}</h2>
            </div>
        )
    }
}
【多变量输入超前多步预测】基于CNN-BiLSTM的光伏功率预测研究(Matlab代码实现)内容概要:本文介绍了基于CNN-BiLSTM模型的多变量输入超前多步光伏功率预测方法,并提供了Matlab代码实现。该研究结合卷积神经网络(CNN)强大的特征提取能力与双向长短期记忆网络(BiLSTM)对时间序列前后依赖关系的捕捉能力,构建了一个高效的深度学习预测模型。模型输入包含多个影响光伏发电的气象与环境变量,能够实现对未来多个时间步长的光伏功率进行精确预测,适用于复杂多变的实际应用场景。文中详细阐述了数据预处理、模型结构设计、训练流程及实验验证过程,展示了该方法相较于传统模型在预测精度和稳定性方面的优势。; 适合人群:具备一定机器学习和深度学习基础,熟悉Matlab编程,从事新能源预测、电力系统分析或相关领域研究的研发人员与高校研究生。; 使用场景及目标:①应用于光伏电站功率预测系统,提升电网调度的准确性与稳定性;②为可再生能源并网管理、能量存储规划及电力市场交易提供可靠的数据支持;③作为深度学习在时间序列多步预测中的典型案例,用于科研复现与教学参考。; 阅读建议:建议读者结合提供的Matlab代码进行实践操作,重点关注数据归一化、CNN特征提取层设计、BiLSTM时序建模及多步预测策略的实现细节,同时可尝试引入更多外部变量或优化网络结构以进一步提升预测性能。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值