四、mysql(3)事物Transaction相关

本文介绍了MySQL事务的概念、四大特征,阐述了数据库事务隔离级别及能解决的问题,如读未提交、读提交等。还详细讲解了Spring事务的5个属性,包括传播行为(如PROPAGATION_REQUIRED等七种)、隔离级别、只读、事务超时和回滚规则。

一、概念

  • Transaction
  • 事务:一个最小的不可再分的工作单元;通常一个事务对应一个完整的业务(例如银行账户转账业务,该业务就是一个最小的工作单元)
  • 一个完整的业务需要批量的DML(insert、update、delete)语句共同联合完成
  • 事务只和DML语句有关,或者说DML语句才有事务。这个和业务逻辑有关,业务逻辑不同,DML语句的个数不同

二、 事务四大特征(ACID)

  • 原子性(A):事务是最小单位,不可再分
  • 一致性(C):事务要求所有的DML语句操作的时候,必须保证同时成功或者同时失败
  • 隔离性(I):事务A和事务B之间具有隔离性
  • 持久性(D):是事务的保证,事务终结的标志(内存的数据持久到硬盘文件中)

三、 关于事务的一些术语

  • 开启事务:Start Transaction
  • 事务结束:End Transaction
  • 提交事务:Commit Transaction
  • 回滚事务:Rollback Transaction

四、事务四大特性之一————隔离性(isolation)

数据库事物中会出现的问题

    1.脏读:脏读指的是当前事务读到了其他事务未提交(uncommitted)的数据;

    2.不可重复读:本处的不可重复指的是在同一事务中,本事务未修改数据的情况下,两次读取的数据不一致;

    3.虚读:虚读类似于不可重复读,只不过读取的不是数据库中某一行数据,而是一类数据,因此其余事务即使只是插入新的数据,也会对本事务的读产生影响;

    4.第一类更新丢失:第一类更新丢失指得是,某一事物回滚(rollback)导致其他事务提交的数据被覆盖;

    5.第二类更新丢失:本质和不可更新读一样,出现于不知道其他事务更新操作的存在。

 

数据库隔离级别

知道了,以上的几个问题,我们来看看数据库事务的隔离级别是如何解决这些问题的:

    1.Read uncommitted 读未提交数据:能解决第一类丢失更新的问题,但不能解决脏读的问题

实现原理是,读数据时候不加锁,写数据时候加行级别的共享锁,提交时释放锁。行级别的共享锁,不会对读产生影响,但是可以防止两个同时的写操作。

 

    2.Read committed 读提交数据:能解决脏读的问题,但是不能解决不可重复读的问题:

实现原理是,事务读取数据(读到数据的时候)加行级共享锁,读完释放;事务写数据时候(写操作发生的瞬间)加行级独占锁,事务结束释放。由于事务写操作加上独占锁,因此事务写操作时,读操作也不能进行,因此,不能读到事务的未提交数据,避免了脏读的问题。但是由于,读操作的锁加在读上面,而不是加在事务之上,所以,在同一事务的两次读操作之间可以插入其他事务的写操作,所以可能发生不可重复读的问题。

 

    3.Repeated Read 可重复读:顾名思义,可以解决不可重复读的问题,但是不能解决虚读问题:

实现原理,和读提交数据不同的是,事务读取数据在读操作开始的瞬间就加上行级共享锁,而且在事务结束的时候才释放。分析方法和读提交数据类似,本处不再赘述。但是,由于加锁只是加在行上,所以,仍然可能发生虚读的问题。

 

    4. Serializable 串行化:可以解决以上所有的并发问题:

实现原理是,在读操作时,加表级共享锁,事务结束时释放;写操作时候,加表级独占锁,事务结束时释放。

 

隔离级别对应能解决的问题

 

五、spring事物的5个属性

 

事务管理器接口PlatformTransactionManager通过getTransaction(TransactionDefinition definition)方法来得到事务,这个方法里面的参数是TransactionDefinition类,这个类就定义了一些基本的事务属性

TransactionDefinition接口内容如下:

public interface TransactionDefinition {
    int getPropagationBehavior(); // 返回事务的传播行为
    int getIsolationLevel(); // 返回事务的隔离级别,事务管理器根据它来控制另外一个事务可以看到本事务内的哪些数据
    int getTimeout();  // 返回事务必须在多少秒内完成
    boolean isReadOnly(); // 事务是否只读,事务管理器能够根据这个返回值进行优化,确保事务是只读的
}

1.传播行为

事务的第一个方面是传播行为(propagation behavior)。当事务方法被另一个事务方法调用时,必须指定事务应该如何传播。例如:方法可能继续在现有事务中运行,也可能开启一个新事务,并在自己的事务中运行。Spring定义了七种传播行为:

传播行为含义
PROPAGATION_REQUIRED表示当前方法必须运行在事务中。如果当前事务存在,方法将会在该事务中运行。否则,会启动一个新的事务
PROPAGATION_SUPPORTS表示当前方法不需要事务上下文,但是如果存在当前事务的话,那么该方法会在这个事务中运行
PROPAGATION_MANDATORY表示该方法必须在事务中运行,如果当前事务不存在,则会抛出一个异常
PROPAGATION_REQUIRED_NEW表示当前方法必须运行在它自己的事务中。一个新的事务将被启动。如果存在当前事务,在该方法执行期间,当前事务会被挂起。如果使用JTATransactionManager的话,则需要访问TransactionManager
PROPAGATION_NOT_SUPPORTED表示该方法不应该运行在事务中。如果存在当前事务,在该方法运行期间,当前事务将被挂起。如果使用JTATransactionManager的话,则需要访问TransactionManager
PROPAGATION_NEVER表示当前方法不应该运行在事务上下文中。如果当前正有一个事务在运行,则会抛出异常
PROPAGATION_NESTED表示如果当前已经存在一个事务,那么该方法将会在嵌套事务中运行。嵌套的事务可以独立于当前事务进行单独地提交或回滚。如果当前事务不存在,那么其行为与PROPAGATION_REQUIRED一样。注意各厂商对这种传播行为的支持是有所差异的。可以参考资源管理器的文档来确认它们是否支持嵌套事务

①PROPAGATION_REQUIRED 如果存在一个事务,则支持当前事务。如果没有事务则开启一个新的事务。


//事务属性 PROPAGATION_REQUIRED
methodA{
    ……
    methodB();
    ……
}

//事务属性 PROPAGATION_REQUIRED
methodB{
   ……
}

使用spring声明式事务,spring使用AOP来支持声明式事务,会根据事务属性,自动在方法调用之前决定是否开启一个事务,并在方法执行之后决定事务提交或回滚事务。

情况一:

单独调用methodB方法:

main{ 
    metodB(); 
} 

相当于:

Main{ 
    Connection con=null; 
    try{ 
        con = getConnection(); 
        con.setAutoCommit(false); 
 
        //方法调用
        methodB(); 
 
        //提交事务
        con.commit(); 
    } Catch(RuntimeException ex) { 
        //回滚事务
        con.rollback();   
    } finally { 
        //释放资源
        closeCon(); 
    } 
}

Spring保证在methodB方法中所有的调用都获得到一个相同的连接。在调用methodB时,没有一个存在的事务,所以获得一个新的连接,开启了一个新的事务。 

情况二:

单独调用MethodA时,在MethodA内又调用MethodB.:

执行效果相当于:

main{ 
    Connection con = null; 
    try{ 
        con = getConnection(); 
        methodA(); 
        con.commit(); 
    } catch(RuntimeException ex) { 
        con.rollback(); 
    } finally {    
        closeCon(); 
    }  
}

调用MethodA时,环境中没有事务,所以开启一个新的事务.当在MethodA中调用MethodB时,环境中已经有了一个事务,所以methodB就加入当前事务。

②PROPAGATION_SUPPORTS 如果存在一个事务,支持当前事务。如果没有事务,则非事务的执行。但是对于事务同步的事务管理器,PROPAGATION_SUPPORTS与不使用事务有少许不同。

//事务属性 PROPAGATION_REQUIRED
methodA(){
  methodB();
}
 
//事务属性 PROPAGATION_SUPPORTS
methodB(){
  ……
}

单纯的调用methodB时,methodB方法是非事务的执行的。当调用methdA时,methodB则加入了methodA的事务中,事务地执行。

③PROPAGATION_MANDATORY 如果已经存在一个事务,支持当前事务。如果没有一个活动的事务,则抛出异常。

//事务属性 PROPAGATION_REQUIRED
methodA(){
    methodB();
}
 
//事务属性 PROPAGATION_MANDATORY
    methodB(){
    ……
}

当单独调用methodB时,因为当前没有一个活动的事务,则会抛出异常throw new IllegalTransactionStateException(“Transaction propagation ‘mandatory’ but no existing transaction found”);当调用methodA时,methodB则加入到methodA的事务中,事务地执行。

④PROPAGATION_REQUIRES_NEW 总是开启一个新的事务。如果一个事务已经存在,则将这个存在的事务挂起。


//事务属性 PROPAGATION_REQUIRED
methodA(){
    doSomeThingA();
    methodB();
    doSomeThingB();
}
 
//事务属性 PROPAGATION_REQUIRES_NEW
methodB(){
    ……
}

调用A方法:

main(){
    methodA();
}

相当于:

main(){
    TransactionManager tm = null;
    try{
        //获得一个JTA事务管理器
        tm = getTransactionManager();
        tm.begin();//开启一个新的事务
        Transaction ts1 = tm.getTransaction();
        doSomeThing();
        tm.suspend();//挂起当前事务
        try{
            tm.begin();//重新开启第二个事务
            Transaction ts2 = tm.getTransaction();
            methodB();
            ts2.commit();//提交第二个事务
        } Catch(RunTimeException ex) {
            ts2.rollback();//回滚第二个事务
        } finally {
            //释放资源
        }
        //methodB执行完后,恢复第一个事务
        tm.resume(ts1);
        doSomeThingB();
        ts1.commit();//提交第一个事务
    } catch(RunTimeException ex) {
        ts1.rollback();//回滚第一个事务
    } finally {
        //释放资源
    }
}

在这里,我把ts1称为外层事务,ts2称为内层事务。从上面的代码可以看出,ts2与ts1是两个独立的事务,互不相干。Ts2是否成功并不依赖于 ts1。

如果methodA方法在调用methodB方法后的doSomeThingB方法失败了,而methodB方法所做的结果依然被提交。而除了 methodB之外的其它代码导致的结果却被回滚了。使用PROPAGATION_REQUIRES_NEW,需要使用 JtaTransactionManager作为事务管理器。

⑤PROPAGATION_NOT_SUPPORTED 总是非事务地执行,并挂起任何存在的事务。使用PROPAGATION_NOT_SUPPORTED,也需要使用JtaTransactionManager作为事务管理器。(代码示例同上,可同理推出)

 

⑥PROPAGATION_NEVER 总是非事务地执行,如果存在一个活动事务,则抛出异常。

 

⑦PROPAGATION_NESTED如果一个活动的事务存在,则运行在一个嵌套的事务中. 如果没有活动事务, 则按TransactionDefinition.PROPAGATION_REQUIRED 属性执行。

这是一个嵌套事务,使用JDBC 3.0驱动时,仅仅支持DataSourceTransactionManager作为事务管理器。需要JDBC 驱动的java.sql.Savepoint类。有一些JTA的事务管理器实现可能也提供了同样的功能。使用PROPAGATION_NESTED,还需要把PlatformTransactionManager的nestedTransactionAllowed属性设为true;而 nestedTransactionAllowed属性值默认为false。


//事务属性 PROPAGATION_REQUIRED
methodA(){
    doSomeThingA();
    methodB();
    doSomeThingB();
}
 
//事务属性 PROPAGATION_NESTED
methodB(){
    ……
}

如果单独调用methodB方法,则按REQUIRED属性执行。如果调用methodA方法,相当于下面的效果:

main(){
    Connection con = null;
    Savepoint savepoint = null;
    try{
        con = getConnection();
        con.setAutoCommit(false);
        doSomeThingA();
        savepoint = con2.setSavepoint();
        try{
            methodB();
        } catch(RuntimeException ex) {
            con.rollback(savepoint);
        } finally {
            //释放资源
        }
        doSomeThingB();
        con.commit();
    } catch(RuntimeException ex) {
        con.rollback();
    } finally {
        //释放资源
    }
}

当methodB方法调用之前,调用setSavepoint方法,保存当前的状态到savepoint。如果methodB方法调用失败,则恢复到之前保存的状态。但是需要注意的是,这时的事务并没有进行提交,如果后续的代码(doSomeThingB()方法)调用失败,则回滚包括methodB方法的所有操作。

嵌套事务一个非常重要的概念就是内层事务依赖于外层事务。外层事务失败时,会回滚内层事务所做的动作。而内层事务操作失败并不会引起外层事务的回滚。

 

注意点:

(1)PROPAGATION_REQUIRED应该是我们首先的事务传播行为。它能够满足我们大多数的事务需求。

(2)PROPAGATION_NESTED 与PROPAGATION_REQUIRES_NEW的区别:

它们非常类似,都像一个嵌套事务,如果不存在一个活动的事务,都会开启一个新的事务。使用 PROPAGATION_REQUIRES_NEW时,内层事务与外层事务就像两个独立的事务一样,一旦内层事务进行了提交后,外层事务不能对其进行回滚。两个事务互不影响。两个事务不是一个真正的嵌套事务。同时它需要JTA事务管理器的支持。

使用PROPAGATION_NESTED时,外层事务的回滚可以引起内层事务的回滚。而内层事务的异常并不会导致外层事务的回滚,它是一个真正的嵌套事务。DataSourceTransactionManager使用savepoint支持PROPAGATION_NESTED时,需要JDBC 3.0以上驱动及1.4以上的JDK版本支持。其它的JTA TrasactionManager实现可能有不同的支持方式。

PROPAGATION_REQUIRES_NEW 启动一个新的, 不依赖于环境的 “内部” 事务. 这个事务将被完全 commited 或 rolled back 而不依赖于外部事务, 它拥有自己的隔离范围, 自己的锁, 等等. 当内部事务开始执行时, 外部事务将被挂起, 内务事务结束时, 外部事务将继续执行。

另一方面, PROPAGATION_NESTED 开始一个 “嵌套的” 事务, 它是已经存在事务的一个真正的子事务. 潜套事务开始执行时, 它将取得一个 savepoint. 如果这个嵌套事务失败, 我们将回滚到此 savepoint. 潜套事务是外部事务的一部分, 只有外部事务结束后它才会被提交。

由此可见, PROPAGATION_REQUIRES_NEW 和 PROPAGATION_NESTED 的最大区别在于, PROPAGATION_REQUIRES_NEW 完全是一个新的事务, 而 PROPAGATION_NESTED 则是外部事务的子事务, 如果外部事务 commit, 嵌套事务也会被 commit, 这个规则同样适用于 roll back.

2.隔离级别

事务的第二个维度就是隔离级别(isolation level)。隔离级别定义了一个事务可能受其他并发事务影响的程度。 

①并发事务引起的问题 

在典型的应用程序中,多个事务并发运行,经常会操作相同的数据来完成各自的任务。并发虽然是必须的,但可能会导致以下的问题。

  • 脏读(Dirty reads)——脏读发生在一个事务读取了另一个事务改写但尚未提交的数据时。如果改写在稍后被回滚了,那么第一个事务获取的数据就是无效的。
  • 不可重复读(Nonrepeatable read)——不可重复读发生在一个事务执行相同的查询两次或两次以上,但是每次都得到不同的数据时。这通常是因为另一个并发事务在两次查询期间进行了更新。
  • 幻读(Phantom read)——幻读与不可重复读类似。它发生在一个事务(T1)读取了几行数据,接着另一个并发事务(T2)插入了一些数据时。在随后的查询中,第一个事务(T1)就会发现多了一些原本不存在的记录。

不可重复读与幻读的区别:

(1)不可重复读的重点是修改: 

同样的条件, 你读取过的数据, 再次读取出来发现值不一样了 
例如:在事务1中,Mary 读取了自己的工资为1000,操作并没有完成

    con1 = getConnection();  
    select salary from employee empId ="Mary";  

在事务2中,这时财务人员修改了Mary的工资为2000,并提交了事务.

    con2 = getConnection();  
    update employee set salary = 2000;  
    con2.commit();  

在事务1中,Mary 再次读取自己的工资时,工资变为了2000

    //con1  
    select salary from employee empId ="Mary"; 

在一个事务中前后两次读取的结果并不一致,导致了不可重复读。

(2)幻读的重点在于新增或者删除:

同样的条件, 第1次和第2次读出来的记录数不一样 
例如:目前工资为1000的员工有10人。事务1,读取所有工资为1000的员工。

    con1 = getConnection();  
    Select * from employee where salary =1000; 

共读取10条记录

这时另一个事务向employee表插入了一条员工记录,工资也为1000

    con2 = getConnection();  
    Insert into employee(empId,salary) values("Lili",1000);  
    con2.commit();  

事务1再次读取所有工资为1000的员工

    //con1  
    select * from employee where salary =1000;  

共读取到了11条记录,这就产生了幻像读。

从总的结果来看, 似乎不可重复读和幻读都表现为两次读取的结果不一致。但如果你从控制的角度来看, 两者的区别就比较大。 
对于前者, 只需要锁住满足条件的记录。 
对于后者, 要锁住满足条件及其相近的记录。

②隔离级别

隔离级别含义
ISOLATION_DEFAULT使用后端数据库默认的隔离级别
ISOLATION_READ_UNCOMMITTED最低的隔离级别,允许读取尚未提交的数据变更,可能会导致脏读、幻读或不可重复读
ISOLATION_READ_COMMITTED允许读取并发事务已经提交的数据,可以阻止脏读,但是幻读或不可重复读仍有可能发生
ISOLATION_REPEATABLE_READ对同一字段的多次读取结果都是一致的,除非数据是被本身事务自己所修改,可以阻止脏读和不可重复读,但幻读仍有可能发生
ISOLATION_SERIALIZABLE最高的隔离级别,完全服从ACID的隔离级别,确保阻止脏读、不可重复读以及幻读,也是最慢的事务隔离级别,因为它通常是通过完全锁定事务相关的数据库表来实现的

3.只读

事务的第三个特性是它是否为只读事务。

如果事务只对后端的数据库进行该操作,数据库可以利用事务的只读特性来进行一些特定的优化。通过将事务设置为只读,你就可以给数据库一个机会,让它应用它认为合适的优化措施。

4.事务超时

为了使应用程序很好地运行,事务不能运行太长的时间。因为事务可能涉及对后端数据库的锁定,所以长时间的事务会不必要的占用数据库资源。

事务超时就是事务的一个定时器,在特定时间内事务如果没有执行完毕,那么就会自动回滚,而不是一直等待其结束。

5.回滚规则

事务五边形的最后一个方面是一组规则,这些规则定义了哪些异常会导致事务回滚而哪些不会。默认情况下,事务只有遇到运行期异常时才会回滚,而在遇到检查型异常时不会回滚(这一行为与EJB的回滚行为是一致的) 

但是你可以声明事务在遇到特定的检查型异常时像遇到运行期异常那样回滚。同样,你还可以声明事务遇到特定的异常不回滚,即使这些异常是运行期异常。

参考文章:

https://blog.youkuaiyun.com/w_linux/article/details/79666086

https://blog.youkuaiyun.com/qq_37937537/article/details/83719978

https://blog.youkuaiyun.com/hcmony/article/details/77850183

MySQL 的事务机制是数据库管理系统中确保数据一致性和完整性的核心功能之一。事务是一组数据库操作,这些操作必须作为一个整体执行,要么全部成功,要么全部失败。这种机制在处理金融交易、订单处理等关键业务场景中尤为重要。 ### 事务的 ACID 特性 MySQL 的事务机制遵循 ACID 特性,即原子性(Atomicity)、一致性(Consistency)、隔离性(Isolation)和持久性(Durability): - **原子性**:事务中的所有操作要么全部完成,要么完全不执行,确保事务不会部分执行[^1]。 - **一致性**:事务执行前后,数据库的完整性约束不会被破坏,确保数据从一个一致状态转换到另一个一致状态[^2]。 - **隔离性**:多个事务并发执行时,每个事务的执行不会受到其他事务的干扰,避免数据不一致的问题[^3]。 - **持久性**:事务一旦提交,其对数据库的修改是永久的,即使系统发生故障也不会丢失[^1]。 ### 事务的隔离级别 MySQL 支持种事务隔离级别,每种级别提供了不同的并发控制和一致性保证: 1. **读未提交(Read Uncommitted)**:允许读取尚未提交的数据变更,可能导致脏读、不可重复读和幻读。 2. **读已提交(Read Committed)**:允许读取已经提交的数据变更,避免脏读,但可能导致不可重复读和幻读。 3. **可重复读(Repeatable Read)**:确保在同一事务中多次读取同一数据时结果一致,避免脏读和不可重复读,但可能遇到幻读。 4. **串行化(Serializable)**:所有事务串行执行,避免脏读、不可重复读和幻读,但并发性能最差[^3]。 MySQL 默认使用 **可重复读(Repeatable Read)** 作为事务隔离级别。 ### 事务控制语句 在 MySQL 中,事务控制主要通过以下 SQL 语句实现: - `START TRANSACTION` 或 `BEGIN`:开始一个新的事务。 - `COMMIT`:提交当前事务,使所有更改永久生效。 - `ROLLBACK`:回滚当前事务,撤销所有未提交的更改。 - `SET autocommit = {0|1}`:控制是否自动提交事务(默认为自动提交)。 ### 事务的实现原理 MySQL 的事务机制主要依赖于其存储引擎(如 InnoDB)实现。InnoDB 通过 **重做日志(Redo Log)** 和 **回滚日志(Undo Log)** 来实现事务的持久性和原子性: - **Redo Log**:记录事务对数据页的物理修改,用于崩溃恢复时重放事务操作,确保事务的持久性。 - **Undo Log**:记录事务修改前的数据状态,用于事务回滚和 MVCC(多版本并发控制)机制。 ### MVCC 机制 MVCC(Multi-Version Concurrency Control)是 InnoDB 引擎实现高并发访问的关键技术之一。它通过为数据行保存多个版本来实现读写操作的隔离性,避免了读操作对写操作的阻塞。MVCC 主要依赖于 **Undo Log** 和 **Read View** 来实现版本控制和可见性判断[^3]。 ### 事务与锁机制 事务的隔离性和并发控制还涉及到锁机制。MySQL 提供了多种锁类型,包括: - **表级锁**:锁定整个表,适用于全表操作或结构变更。 - **行级锁**:锁定特定行,适用于高并发场景。 - **意向锁**:用于表明事务对表中某些行有加锁的意图。 - **间隙锁(Gap Lock)** 和 **临键锁(Next-Key Lock)**:用于防止幻读,确保在可重复读隔离级别下数据的一致性[^4]。 ### 事务的最佳实践 在实际应用中,合理使用事务可以提高系统的可靠性和性能: - 尽量减少事务的执行时间,避免长时间持有锁。 - 在事务中按固定顺序访问资源,减少死锁的可能性。 - 根据业务需求选择合适的隔离级别,平衡一致性与性能。 - 合理使用索引,减少锁的粒度,提高并发性能[^4]。 ### 示例代码 以下是一个简单的事务控制示例: ```sql START TRANSACTION; UPDATE accounts SET balance = balance - 100 WHERE id = 1; UPDATE accounts SET balance = balance + 100 WHERE id = 2; COMMIT; ``` 在这个例子中,两个账户之间的资金转移操作被包裹在一个事务中,确保操作的原子性和一致性。 ---
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值