653. 两数之和 IV - 输入 BST
方法一:DFS+哈希
通过遍历所有结点,边查询边插入集合的方式,其实这种方法没有用到BST树的性质,任何一个二叉树都可以
时间复杂度: O ( n ) O(n) O(n)
空间复杂度: O ( n ) O(n) O(n)
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
set<int> S;
bool findTarget(TreeNode* root, int k) {
if (!root) return false;
if (S.count(k - root->val)) return true;
S.insert(root->val);
return findTarget(root->left, k) || findTarget(root->right, k);
}
};
方法二:中序遍历+双指针
中序得到有序序列,转化为有序数组的双指针问题
复杂度:同上
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
vector<int> seq;
void dfs(TreeNode* root) {
if (!root) return ;
dfs(root->left);
seq.push_back(root->val);
dfs(root->right);
}
bool findTarget(TreeNode* root, int k) {
dfs(root);
for (int i = 0, j = seq.size() - 1; i < j; i ++ ) {
while (j > i && seq[i] + seq[j] > k) j -- ;
if (i != j && seq[i] + seq[j] == k) return true;
}
return false;
}
};