题目链接
思路
最近在刷白书上的dp题感觉都好难啊,都是看了题解才会写= =
先将所有书按高度从高到低排序
状态表示:d[i][j],省略第一维k,在放第k本书时,第2层和第3层的宽度分别为i和j(因为第2,3层的放置一旦确定,那么第一层的也确定了)的书架的最小高度
转移:分为放第k本书时,这本书放在第1、2、3的哪一层,并且该层是否已经放书,如果该层已经放书了的话,高度不需要更新(因为高度已经排序),否则要更新最大高度
一个细节就是可以默认第1本书放在第一层,那么后面的书如果放在第1层的话高度就不需要更新
转移方程:
放第一层:
d[i][j] = d[i][j]
放第二层:
i == 0: d[i + a[k].w][j] = min(d[i + a[k].w][j], d[i][j] + a[k].h)
i != 0: d[i + a[k].w][j] = min(d[i + a[k].w][j], d[i][j])
放第三层:
j == 0: d[i][j + a[k].w] = min(d[i][j +a[k].w], d[i][j] + a[k].h)
j != 0: d[i][j + a[k].w] = min(d[i][j + a[k].w], d[i][j])
代码
#include <iostream>
#include <cstring>
#include <stack>
#include <vector>
#include <set>
#include <map>
#include <cmath>
#include <queue>
#include <sstream>
#include <iomanip>
#include <fstream>
#include <cstdio>
#include <cstdlib>
#include <climits>
#include <deque>
#include <bitset>
#include <algorithm>
using namespace std;
#define PI acos(-1.0)
#define LL long long
#define PII pair<int, int>
#define PLL pair<LL, LL>
#define mp make_pair
#define IN freopen("in.txt", "r", stdin)
#define OUT freopen("out.txt", "wb", stdout)
#define scan(x) scanf("%d", &x)
#define scan2(x, y) scanf("%d%d", &x, &y)
#define scan3(x, y, z) scanf("%d%d%d", &x, &y, &z)
#define sqr(x) (x) * (x)
#define pr(x) cout << #x << " = " << x << endl
#define lc o << 1
#define rc o << 1 | 1
#define pl() cout << endl
#define CLR(a, x) memset(a, x, sizeof(a))
#define FILL(a, n, x) for (int i = 0; i < n; i++) a[i] = x
const int maxn = 75;
const int maxw = 2100 + 5;
const int INF = 1000;
struct node {
int w, h;
} a[maxn];
int d[maxw][maxw], totw, n;
bool cmp(node x, node y) {
return x.h > y.h;
}
int solve() {
for (int i = 0; i < maxw; i++) {
for (int j = 0; j < maxw; j++)
d[i][j] = INF;
}
d[0][0] = a[1].h;
for (int k = 2; k <= n; k++) {
for (int i = totw; i >= 0; i--) {
for (int j = totw; j >= 0; j--) {
if (d[i][j] != INF) {
if (i) d[i + a[k].w][j] = min(d[i + a[k].w][j], d[i][j]);
else d[i + a[k].w][j] = min(d[i + a[k].w][j], d[i][j] + a[k].h);
if (j) d[i][j + a[k].w] = min(d[i][j + a[k].w], d[i][j]);
else d[i][j + a[k].w] = min(d[i][j +a[k].w], d[i][j] + a[k].h);
}
}
}
}
int ans = INT_MAX;
for (int i = 1; i <= totw; i++) {
for (int j = 1; j <= totw; j++) {
int w1 = totw - i - j;
int w = max(w1, max(i, j));
ans = min(ans, w * d[i][j]);
}
}
return ans;
}
int main() {
int T;
scan(T);
while (T--) {
scan(n);
totw = 0;
for (int i = 1; i <= n; i++) {
scan2(a[i].h, a[i].w);
totw += a[i].w;
}
sort(a + 1, a + 1 + n, cmp);
printf("%d\n", solve());
}
return 0;
}