OS X应用程序设计

本文档是学习如何创建为出发点的Mac应用程序。它包含基本的信息关于您的OS X的应用程序,互动的环境和知识环境。它也包含重要的信息关于苹果应用程序架构设计和关键部件的提示为您的应用程序。


推荐教程链接:http://www.raywenderlich.com/17811/how-to-make-a-simple-mac-app-on-os-x-10-7-tutorial-part-13

推荐iOS开发技术交流群:98787555。希望相互交流

环境:OS X 10.10.3

工具:Xcode

下载链接:Xcode6.1 下载链接

备注:本人现在都没有用Swift来开发。所以创建的工程也是以OC为基础的。


开始

一. 打开安装好的Xcode



二.创建一个Project.然后跟创建一个iOS工程非常相似。就是选择的模板不同




三.设置工程名称



四.工程存放的路径


五.这样的话。工程就创建好了(和iOS的创建几乎是相同的。就是模板不同而已)


六.选中到故事版。故事版中又一个Window模板和一个控制器



七.那么学过iOS的同学都知道。控制器上默认是有一个View的。利用自动布局在这个View上面可添加多个视图控件



八.好了!第一个项目搞定!运行效果














































内容概要:本文介绍了基于贝叶斯优化的CNN-LSTM混合神经网络在时间序列预测中的应用,并提供了完整的Matlab代码实现。该模型结合了卷积神经网络(CNN)在特征提取方面的优势与长短期记忆网络(LSTM)在处理时序依赖问题上的强大能力,形成一种高效的混合预测架构。通过贝叶斯优化算法自动调参,提升了模型的预测精度与泛化能力,适用于风电、光伏、负荷、交通流等多种复杂非线性系统的预测任务。文中还展示了模型训练流程、参数优化机制及实际预测效果分析,突出其在科研与工程应用中的实用性。; 适合人群:具备一定机器学习基基于贝叶斯优化CNN-LSTM混合神经网络预测(Matlab代码实现)础和Matlab编程经验的高校研究生、科研人员及从事预测建模的工程技术人员,尤其适合关注深度学习与智能优化算法结合应用的研究者。; 使用场景及目标:①解决各类时间序列预测问题,如能源出力预测、电力负荷预测、环境数据预测等;②学习如何将CNN-LSTM模型与贝叶斯优化相结合,提升模型性能;③掌握Matlab环境下深度学习模型搭建与超参数自动优化的技术路线。; 阅读建议:建议读者结合提供的Matlab代码进行实践操作,重点关注贝叶斯优化模块与混合神经网络结构的设计逻辑,通过调整数据集和参数加深对模型工作机制的理解,同时可将其框架迁移至其他预测场景中验证效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值