C. Platforms Jumping

本文探讨了一个有趣的问题,即如何在给定的跳跃距离和木制平台长度下,从河的一侧到达另一侧。通过调整平台位置但保持相对顺序不变,算法确定了是否可以成功到达对岸,并提供了一种可能的解决方案。

链接:http://codeforces.com/contest/1256/problem/C

There is a river of width nn. The left bank of the river is cell 00 and the right bank is cell n+1n+1 (more formally, the river can be represented as a sequence of n+2n+2 cells numbered from 00 to n+1n+1). There are also mm wooden platforms on a river, the ii-th platform has length cici (so the ii-th platform takes cici consecutive cells of the river). It is guaranteed that the sum of lengths of platforms does not exceed nn.

You are standing at 00 and want to reach n+1n+1 somehow. If you are standing at the position xx, you can jump to any position in the range [x+1;x+d][x+1;x+d]. However you don't really like the water so you can jump only to such cells that belong to some wooden platform. For example, if d=1d=1, you can jump only to the next position (if it belongs to the wooden platform). You can assume that cells 00 and n+1n+1 belong to wooden platforms.

You want to know if it is possible to reach n+1n+1 from 00 if you can move any platform to the left or to the right arbitrary number of times (possibly, zero) as long as they do not intersect each other (but two platforms can touch each other). It also means that you cannot change the relative order of platforms.

Note that you should move platforms until you start jumping (in other words, you first move the platforms and then start jumping).

For example, if n=7n=7, m=3m=3, d=2d=2 and c=[1,2,1]c=[1,2,1], then one of the ways to reach 88 from 00 is follow:

The first example: n=7n=7.

Input

The first line of the input contains three integers nn, mm and dd (1≤n,m,d≤1000,m≤n1≤n,m,d≤1000,m≤n) — the width of the river, the number of platforms and the maximum distance of your jump, correspondingly.

The second line of the input contains mm integers c1,c2,…,cmc1,c2,…,cm (1≤ci≤n,∑i=1mci≤n1≤ci≤n,∑i=1mci≤n), where cici is the length of the ii-th platform.

Output

If it is impossible to reach n+1n+1 from 00, print NO in the first line. Otherwise, print YES in the first line and the array aa of length nn in the second line — the sequence of river cells (excluding cell 00 and cell n+1n+1).

If the cell ii does not belong to any platform, aiai should be 00. Otherwise, it should be equal to the index of the platform (11-indexed, platforms are numbered from 11 to mm in order of input) to which the cell ii belongs.

Note that all aiai equal to 11 should form a contiguous subsegment of the array aa of length c1c1, all aiai equal to 22 should form a contiguous subsegment of the array aa of length c2c2, ..., all aiai equal to mm should form a contiguous subsegment of the array aa of length cmcm. The leftmost position of 22 in aa should be greater than the rightmost position of 11, the leftmost position of 33 in aa should be greater than the rightmost position of 22, ..., the leftmost position of mm in aa should be greater than the rightmost position of m−1m−1.

See example outputs for better understanding.

Examples

input

Copy

7 3 2
1 2 1

output

Copy

YES
0 1 0 2 2 0 3 

input

Copy

10 1 11
1

output

Copy

YES
0 0 0 0 0 0 0 0 0 1 

input

Copy

10 1 5
2

output

Copy

YES
0 0 0 0 1 1 0 0 0 0 

Note

Consider the first example: the answer is [0,1,0,2,2,0,3][0,1,0,2,2,0,3]. The sequence of jumps you perform is 0→2→4→5→7→80→2→4→5→7→8.

Consider the second example: it does not matter how to place the platform because you always can jump from 00 to 1111.

Consider the third example: the answer is [0,0,0,0,1,1,0,0,0,0][0,0,0,0,1,1,0,0,0,0]. The sequence of jumps you perform is 0→5→6→110→5→6→11.

代码:

#include<bits/stdc++.h>
using namespace std;
int n,t,m,d,sum,s1;
int ans[100001];
int ls[100001];
int c[100001];
int main()
{
	cin>>n>>m>>d;
	sum=0;
	for(int i=1;i<=m;i++) 
	{
		cin>>c[i];
		sum+=(c[i]-1);
	}
	ls[m]=c[m];
	for(int i=m-1;i>=1;i--)
		ls[i]=c[i]+ls[i+1];
	if(d*(m+1)<n-sum+1) 
	{
		printf("NO\n");
	}
	else 
	{
		printf("YES\n");
		int l=0,r=1;
		memset(ans,0,sizeof(ans));
		while(l<n+1) 
		{
			if(n+1-d-l<=ls[r]) 
			{
				int ll=c[r];
				while(l<n+1) 
				{
					l++;
					if(r<=m) 
						ans[l]=r;
					ll--;
					if(ll==0) 
					{
						r++;
						ll=c[r];
					}
				}
				break;	
			}
			else 
			{
				l+=d;
				for(int i=l;i<=l+c[r]-1;i++) 
				{
					ans[i]=r;
				}
				l=l+c[r]-1;
				r++;
			}
		}
		for(int i=1;i<=n;i++)
			cout<<ans[i]<<" ";
		cout<<endl;
	}
	return 0;
}

 

#include <GL/freeglut.h> #include <cmath> #include <vector> #include <ctime> #include <cstdlib> #include <string> // 游戏常量 const float GRAVITY = -0.001f; const float JUMP_FORCE_MULTIPLIER = 0.015f; const float MAX_JUMP_FORCE = 0.6f; const float MIN_JUMP_FORCE = 0.1f; // 游戏状态 struct GameState { struct Platform { float x, z; float size; float height; float r, g, b; }; struct Player { float x, y, z; float velocityY; bool isJumping; float jumpForce; float chargeTime; }; Player player; std::vector<Platform> platforms; int currentPlatform; bool isCharging; int score; bool gameOver; }; GameState game; // 初始化游戏 void initGame() { // 初始化玩家 game.player = { 0, 0.5f, 0, 0, false, 0, 0 }; game.currentPlatform = 0; game.isCharging = false; game.score = 0; game.gameOver = false; // 清空平台 game.platforms.clear(); // 创建初始平台 game.platforms.push_back({ 0, 0, 2.0f, 0.5f, 0.2f, 0.6f, 0.3f }); // 创建随机平台 srand(time(0)); for (int i = 1; i < 20; ++i) { float x = game.platforms[i - 1].x + (rand() % 5 + 3) * (rand() % 2 ? 1 : -1); float z = game.platforms[i - 1].z + (rand() % 5 + 3) * (rand() % 2 ? 1 : -1); float size = 1.5f + (rand() % 100) * 0.01f; float height = 0.3f + (rand() % 100) * 0.01f; game.platforms.push_back({ x, z, size, height, (rand() % 100) / 100.0f, (rand() % 100) / 100.0f, (rand() % 100) / 100.0f }); } } // 绘制立方体 void drawCube(float x, float y, float z, float size, float r, float g, float b) { glPushMatrix(); glTranslatef(x, y, z); glColor3f(r, g, b); float s = size / 2.0f; glBegin(GL_QUADS); // 前面 glVertex3f(-s, -s, s); glVertex3f(s, -s, s); glVertex3f(s, s, s); glVertex3f(-s, s, s); // 后面 glVertex3f(-s, -s, -s); glVertex3f(-s, s, -s); glVertex3f(s, s, -s); glVertex3f(s, -s, -s); // 左面 glVertex3f(-s, -s, s); glVertex3f(-s, s, s); glVertex3f(-s, s, -s); glVertex3f(-s, -s, -s); // 右面 glVertex3f(s, -s, s); glVertex3f(s, -s, -s); glVertex3f(s, s, -s); glVertex3f(s, s, s); // 上面 glVertex3f(-s, s, s); glVertex3f(s, s, s); glVertex3f(s, s, -s); glVertex3f(-s, s, -s); // 下面 glVertex3f(-s, -s, s); glVertex3f(-s, -s, -s); glVertex3f(s, -s, -s); glVertex3f(s, -s, s); glEnd(); glPopMatrix(); } // 绘制玩家 void drawPlayer() { glPushMatrix(); glTranslatef(game.player.x, game.player.y, game.player.z); glColor3f(1.0f, 0.0f, 0.0f); // 红色玩家 // 简单的人物表示 - 一个小立方体 glutSolidCube(0.3f); // 如果正在蓄力,绘制蓄力指示器 if (game.isCharging) { glPushMatrix(); glTranslatef(0, 0.5f, 0); glColor3f(1.0f, 1.0f, 0.0f); glutWireSphere(game.player.jumpForce * 2.0f, 10, 10); glPopMatrix(); } glPopMatrix(); } // 显示函数 void display() { glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); glLoadIdentity(); // 设置固定视角的相机 - 从斜上方观察 gluLookAt( 0.0f, 10.0f, 10.0f, // 相机位置 (固定在正上方偏后) 0.0f, 0.0f, 0.0f, // 观察点 (场景中心) 0.0f, 1.0f, 0.0f // 上向量 ); // 绘制地面网格 glColor3f(0.5f, 0.5f, 0.5f); glBegin(GL_LINES); for (int i = -50; i <= 50; i += 2) { glVertex3f(i, 0, -50); glVertex3f(i, 0, 50); glVertex3f(-50, 0, i); glVertex3f(50, 0, i); } glEnd(); // 绘制平台 for (const auto& platform : game.platforms) { drawCube(platform.x, platform.height / 2.0f, platform.z, platform.size, platform.r, platform.g, platform.b); } // 绘制玩家 drawPlayer(); // 显示分数和游戏状态 glMatrixMode(GL_PROJECTION); glPushMatrix(); glLoadIdentity(); gluOrtho2D(0, 800, 0, 600); glMatrixMode(GL_MODELVIEW); glPushMatrix(); glLoadIdentity(); glColor3f(1.0f, 1.0f, 1.0f); glRasterPos2i(10, 580); std::string scoreStr = "Score: " + std::to_string(game.score); for (char c : scoreStr) { glutBitmapCharacter(GLUT_BITMAP_HELVETICA_18, c); } if (game.gameOver) { glRasterPos2i(350, 300); std::string gameOverStr = "Game Over! Press R to restart"; for (char c : gameOverStr) { glutBitmapCharacter(GLUT_BITMAP_HELVETICA_18, c); } } glPopMatrix(); glMatrixMode(GL_PROJECTION); glPopMatrix(); glMatrixMode(GL_MODELVIEW); glutSwapBuffers(); } // 更新游戏状态 void update(int value) { if (!game.gameOver) { // 更新玩家位置 if (game.player.isJumping) { game.player.y += game.player.velocityY; game.player.velocityY += GRAVITY; // 检查是否落地 if (game.player.y <= game.platforms[game.currentPlatform].height) { game.player.y = game.platforms[game.currentPlatform].height; game.player.isJumping = false; game.player.velocityY = 0; } } // 蓄力时增加跳跃力 if (game.isCharging) { game.player.chargeTime += 0.1f; game.player.jumpForce = std::min(game.player.chargeTime * JUMP_FORCE_MULTIPLIER, MAX_JUMP_FORCE); } // 检查是否掉出世界 if (game.player.y < -5.0f) { game.gameOver = true; } } glutPostRedisplay(); glutTimerFunc(16, update, 0); // 约60FPS } // 键盘按键处理 void keyboard(unsigned char key, int x, int y) { if (game.gameOver && (key == 'r' || key == 'R')) { initGame(); return; } if (!game.gameOver && key == ' ') { if (!game.player.isJumping && !game.isCharging) { game.isCharging = true; game.player.chargeTime = 0; game.player.jumpForce = MIN_JUMP_FORCE; } } } // 键盘释放处理 void keyboardUp(unsigned char key, int x, int y) { if (!game.gameOver && key == ' ' && game.isCharging) { game.isCharging = false; if (!game.player.isJumping) { game.player.isJumping = true; game.player.velocityY = game.player.jumpForce; // 计算跳跃方向 (随机方向) float angle = static_cast<float>(rand() % 360) * 3.14159f / 180.0f; float jumpDistance = game.player.jumpForce * 30.0f; game.player.x += jumpDistance * sin(angle); game.player.z += jumpDistance * cos(angle); // 检查是否落在平台上 bool landed = false; for (size_t i = 0; i < game.platforms.size(); ++i) { auto& p = game.platforms[i]; if (fabs(game.player.x - p.x) < p.size / 2 && fabs(game.player.z - p.z) < p.size / 2) { game.currentPlatform = i; landed = true; // 计算得分 (越靠近中心得分越高) float distFromCenter = sqrt(pow(game.player.x - p.x, 2) + pow(game.player.z - p.z, 2)); float maxDist = p.size / 2; int points = static_cast<int>(10 * (1 - distFromCenter / maxDist)); game.score += std::max(1, points); break; } } // 如果没落在任何平台上,游戏结束 if (!landed) { game.gameOver = true; } } } } // 窗口大小调整 void reshape(int w, int h) { glViewport(0, 0, w, h); glMatrixMode(GL_PROJECTION); glLoadIdentity(); gluPerspective(45.0f, (float)w / (float)h, 0.1f, 100.0f); glMatrixMode(GL_MODELVIEW); } int main(int argc, char** argv) { glutInit(&argc, argv); glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGB | GLUT_DEPTH); glutInitWindowSize(800, 600); glutCreateWindow("跳一跳游戏 - 固定视角"); glEnable(GL_DEPTH_TEST); glClearColor(0.53f, 0.81f, 0.92f, 1.0f); // 天空蓝色背景 initGame(); glutDisplayFunc(display); glutReshapeFunc(reshape); glutKeyboardFunc(keyboard); glutKeyboardUpFunc(keyboardUp); glutTimerFunc(0, update, 0); glutMainLoop(); return 0; }帮我修改一下代码,我现在想要一开始就有小人站在第一个正方体上
06-16
// SPDX-License-Identifier: GPL-2.0+ /* * (C) Copyright 2010 * Texas Instruments, <www.ti.com> * * Aneesh V <aneesh@ti.com> */ #include <common.h> #include <bloblist.h> #include <binman_sym.h> #include <bootstage.h> #include <dm.h> #include <handoff.h> #include <hang.h> #include <init.h> #include <irq_func.h> #include <log.h> #include <mapmem.h> #include <serial.h> #include <spl.h> #include <asm/global_data.h> #include <asm/u-boot.h> #include <nand.h> #include <fat.h> #include <u-boot/crc.h> #include <version.h> #include <image.h> #include <malloc.h> #include <mapmem.h> #include <dm/root.h> #include <linux/compiler.h> #include <fdt_support.h> #include <bootcount.h> #include <wdt.h> DECLARE_GLOBAL_DATA_PTR; #ifndef CONFIG_SYS_UBOOT_START #define CONFIG_SYS_UBOOT_START CONFIG_SYS_TEXT_BASE #endif #ifndef CONFIG_SYS_MONITOR_LEN /* Unknown U-Boot size, let's assume it will not be more than 200 KB */ #define CONFIG_SYS_MONITOR_LEN (200 * 1024) #endif u32 *boot_params_ptr = NULL; /* See spl.h for information about this */ binman_sym_declare(ulong, u_boot_any, image_pos); binman_sym_declare(ulong, u_boot_any, size); #ifdef CONFIG_TPL binman_sym_declare(ulong, spl, image_pos); binman_sym_declare(ulong, spl, size); #endif /* Define board data structure */ static struct bd_info bdata __attribute__ ((section(".data"))); #if CONFIG_IS_ENABLED(BOOTSTAGE) /* * Board-specific Platform code can reimplement show_boot_progress () if needed */ __weak void show_boot_progress(int val) {} #endif #if defined(CONFIG_SPL_OS_BOOT) || CONFIG_IS_ENABLED(HANDOFF) || \ defined(CONFIG_SPL_ATF) /* weak, default platform-specific function to initialize dram banks */ __weak int dram_init_banksize(void) { return 0; } #endif /* * Default function to determine if u-boot or the OS should * be started. This implementation always returns 1. * * Please implement your own board specific funcion to do this. * * RETURN * 0 to not start u-boot * positive if u-boot should start */ #ifdef CONFIG_SPL_OS_BOOT __weak int spl_start_uboot(void) { puts(SPL_TPL_PROMPT "Please implement spl_start_uboot() for your board\n"); puts(SPL_TPL_PROMPT "Direct Linux boot not active!\n"); return 1; } /* * Weak default function for arch specific zImage check. Return zero * and fill start and end address if image is recognized. */ int __weak bootz_setup(ulong image, ulong *start, ulong *end) { return 1; } #endif /* Weak default function for arch/board-specific fixups to the spl_image_info */ void __weak spl_perform_fixups(struct spl_image_info *spl_image) { } void spl_fixup_fdt(void *fdt_blob) { #if defined(CONFIG_SPL_OF_LIBFDT) int err; if (!fdt_blob) return; err = fdt_check_header(fdt_blob); if (err < 0) { printf("fdt_root: %s\n", fdt_strerror(err)); return; } /* fixup the memory dt node */ err = fdt_shrink_to_minimum(fdt_blob, 0); if (err == 0) { printf(SPL_TPL_PROMPT "fdt_shrink_to_minimum err - %d\n", err); return; } err = arch_fixup_fdt(fdt_blob); if (err) { printf(SPL_TPL_PROMPT "arch_fixup_fdt err - %d\n", err); return; } #endif } ulong spl_get_image_pos(void) { return spl_phase() == PHASE_TPL ? binman_sym(ulong, spl, image_pos) : binman_sym(ulong, u_boot_any, image_pos); } ulong spl_get_image_size(void) { return spl_phase() == PHASE_TPL ? binman_sym(ulong, spl, size) : binman_sym(ulong, u_boot_any, size); } ulong spl_get_image_text_base(void) { return spl_phase() == PHASE_TPL ? CONFIG_SPL_TEXT_BASE : CONFIG_SYS_TEXT_BASE; } /* * Weak default function for board specific cleanup/preparation before * Linux boot. Some boards/platforms might not need it, so just provide * an empty stub here. */ __weak void spl_board_prepare_for_linux(void) { /* Nothing to do! */ } __weak void spl_board_prepare_for_optee(void *fdt) { } __weak void spl_board_prepare_for_boot(void) { /* Nothing to do! */ } __weak struct image_header *spl_get_load_buffer(ssize_t offset, size_t size) { return map_sysmem(CONFIG_SYS_TEXT_BASE + offset, 0); } void spl_set_header_raw_uboot(struct spl_image_info *spl_image) { ulong u_boot_pos = binman_sym(ulong, u_boot_any, image_pos); spl_image->size = CONFIG_SYS_MONITOR_LEN; /* * Binman error cases: address of the end of the previous region or the * start of the image's entry area (usually 0) if there is no previous * region. */ if (u_boot_pos && u_boot_pos != BINMAN_SYM_MISSING) { /* Binman does not support separated entry addresses */ spl_image->entry_point = u_boot_pos; spl_image->load_addr = u_boot_pos; } else { spl_image->entry_point = CONFIG_SYS_UBOOT_START; spl_image->load_addr = CONFIG_SYS_TEXT_BASE; } spl_image->os = IH_OS_U_BOOT; spl_image->name = "U-Boot"; } #if CONFIG_IS_ENABLED(LOAD_FIT_FULL) /* Parse and load full fitImage in SPL */ static int spl_load_fit_image(struct spl_image_info *spl_image, const struct image_header *header) { bootm_headers_t images; const char *fit_uname_config = NULL; uintptr_t fdt_hack; const char *uname; ulong fw_data = 0, dt_data = 0, img_data = 0; ulong fw_len = 0, dt_len = 0, img_len = 0; int idx, conf_noffset; int ret; #ifdef CONFIG_SPL_FIT_SIGNATURE images.verify = 1; #endif ret = fit_image_load(&images, (ulong)header, NULL, &fit_uname_config, IH_ARCH_DEFAULT, IH_TYPE_STANDALONE, -1, FIT_LOAD_OPTIONAL, &fw_data, &fw_len); if (ret >= 0) { printf("DEPRECATED: 'standalone = ' property."); printf("Please use either 'firmware =' or 'kernel ='\n"); } else { ret = fit_image_load(&images, (ulong)header, NULL, &fit_uname_config, IH_ARCH_DEFAULT, IH_TYPE_FIRMWARE, -1, FIT_LOAD_OPTIONAL, &fw_data, &fw_len); } if (ret < 0) { ret = fit_image_load(&images, (ulong)header, NULL, &fit_uname_config, IH_ARCH_DEFAULT, IH_TYPE_KERNEL, -1, FIT_LOAD_OPTIONAL, &fw_data, &fw_len); } if (ret < 0) return ret; spl_image->size = fw_len; spl_image->entry_point = fw_data; spl_image->load_addr = fw_data; if (fit_image_get_os(header, ret, &spl_image->os)) spl_image->os = IH_OS_INVALID; spl_image->name = genimg_get_os_name(spl_image->os); debug(SPL_TPL_PROMPT "payload image: %32s load addr: 0x%lx size: %d\n", spl_image->name, spl_image->load_addr, spl_image->size); #ifdef CONFIG_SPL_FIT_SIGNATURE images.verify = 1; #endif ret = fit_image_load(&images, (ulong)header, NULL, &fit_uname_config, IH_ARCH_DEFAULT, IH_TYPE_FLATDT, -1, FIT_LOAD_OPTIONAL, &dt_data, &dt_len); if (ret >= 0) { spl_image->fdt_addr = (void *)dt_data; if (spl_image->os == IH_OS_U_BOOT) { /* HACK: U-boot expects FDT at a specific address */ fdt_hack = spl_image->load_addr + spl_image->size; fdt_hack = (fdt_hack + 3) & ~3; debug("Relocating FDT to %p\n", spl_image->fdt_addr); memcpy((void *)fdt_hack, spl_image->fdt_addr, dt_len); } } conf_noffset = fit_conf_get_node((const void *)header, fit_uname_config); if (conf_noffset <= 0) return 0; for (idx = 0; uname = fdt_stringlist_get((const void *)header, conf_noffset, FIT_LOADABLE_PROP, idx, NULL), uname; idx++) { #ifdef CONFIG_SPL_FIT_SIGNATURE images.verify = 1; #endif ret = fit_image_load(&images, (ulong)header, &uname, &fit_uname_config, IH_ARCH_DEFAULT, IH_TYPE_LOADABLE, -1, FIT_LOAD_OPTIONAL_NON_ZERO, &img_data, &img_len); if (ret < 0) return ret; } return 0; } #endif __weak int spl_parse_board_header(struct spl_image_info *spl_image, const void *image_header, size_t size) { return -EINVAL; } __weak int spl_parse_legacy_header(struct spl_image_info *spl_image, const struct image_header *header) { /* LEGACY image not supported */ debug("Legacy boot image support not enabled, proceeding to other boot methods\n"); return -EINVAL; } int spl_parse_image_header(struct spl_image_info *spl_image, const struct image_header *header) { #if CONFIG_IS_ENABLED(LOAD_FIT_FULL) int ret = spl_load_fit_image(spl_image, header); if (!ret) return ret; #endif if (image_get_magic(header) == IH_MAGIC) { int ret; ret = spl_parse_legacy_header(spl_image, header); if (ret) return ret; } else { #ifdef CONFIG_SPL_PANIC_ON_RAW_IMAGE /* * CONFIG_SPL_PANIC_ON_RAW_IMAGE is defined when the * code which loads images in SPL cannot guarantee that * absolutely all read errors will be reported. * An example is the LPC32XX MLC NAND driver, which * will consider that a completely unreadable NAND block * is bad, and thus should be skipped silently. */ panic("** no mkimage signature but raw image not supported"); #endif #ifdef CONFIG_SPL_OS_BOOT ulong start, end; if (!bootz_setup((ulong)header, &start, &end)) { spl_image->name = "Linux"; spl_image->os = IH_OS_LINUX; spl_image->load_addr = CONFIG_SYS_LOAD_ADDR; spl_image->entry_point = CONFIG_SYS_LOAD_ADDR; spl_image->size = end - start; debug(SPL_TPL_PROMPT "payload zImage, load addr: 0x%lx size: %d\n", spl_image->load_addr, spl_image->size); return 0; } #endif if (!spl_parse_board_header(spl_image, (const void *)header, sizeof(*header))) return 0; #ifdef CONFIG_SPL_RAW_IMAGE_SUPPORT /* Signature not found - assume u-boot.bin */ debug("mkimage signature not found - ih_magic = %x\n", header->ih_magic); spl_set_header_raw_uboot(spl_image); #else /* RAW image not supported, proceed to other boot methods. */ debug("Raw boot image support not enabled, proceeding to other boot methods\n"); return -EINVAL; #endif } return 0; } __weak void __noreturn jump_to_image_no_args(struct spl_image_info *spl_image) { typedef void __noreturn (*image_entry_noargs_t)(void); image_entry_noargs_t image_entry = (image_entry_noargs_t)spl_image->entry_point; debug("image entry point: 0x%lx\n", spl_image->entry_point); image_entry(); } #if CONFIG_IS_ENABLED(HANDOFF) /** * Set up the SPL hand-off information * * This is initially empty (zero) but can be written by */ static int setup_spl_handoff(void) { struct spl_handoff *ho; ho = bloblist_ensure(BLOBLISTT_SPL_HANDOFF, sizeof(struct spl_handoff)); if (!ho) return -ENOENT; return 0; } __weak int handoff_arch_save(struct spl_handoff *ho) { return 0; } static int write_spl_handoff(void) { struct spl_handoff *ho; int ret; ho = bloblist_find(BLOBLISTT_SPL_HANDOFF, sizeof(struct spl_handoff)); if (!ho) return -ENOENT; handoff_save_dram(ho); ret = handoff_arch_save(ho); if (ret) return ret; debug(SPL_TPL_PROMPT "Wrote SPL handoff\n"); return 0; } #else static inline int setup_spl_handoff(void) { return 0; } static inline int write_spl_handoff(void) { return 0; } #endif /* HANDOFF */ /** * get_bootstage_id() - Get the bootstage ID to emit * * @start: true if this is for starting SPL, false for ending it * @return bootstage ID to use */ static enum bootstage_id get_bootstage_id(bool start) { enum u_boot_phase phase = spl_phase(); if (IS_ENABLED(CONFIG_TPL_BUILD) && phase == PHASE_TPL) return start ? BOOTSTAGE_ID_START_TPL : BOOTSTAGE_ID_END_TPL; else return start ? BOOTSTAGE_ID_START_SPL : BOOTSTAGE_ID_END_SPL; } static int spl_common_init(bool setup_malloc) { int ret; #if CONFIG_VAL(SYS_MALLOC_F_LEN) if (setup_malloc) { #ifdef CONFIG_MALLOC_F_ADDR gd->malloc_base = CONFIG_MALLOC_F_ADDR; #endif gd->malloc_limit = CONFIG_VAL(SYS_MALLOC_F_LEN); gd->malloc_ptr = 0; } #endif ret = bootstage_init(u_boot_first_phase()); if (ret) { debug("%s: Failed to set up bootstage: ret=%d\n", __func__, ret); return ret; } #ifdef CONFIG_BOOTSTAGE_STASH if (!u_boot_first_phase()) { const void *stash = map_sysmem(CONFIG_BOOTSTAGE_STASH_ADDR, CONFIG_BOOTSTAGE_STASH_SIZE); ret = bootstage_unstash(stash, CONFIG_BOOTSTAGE_STASH_SIZE); if (ret) debug("%s: Failed to unstash bootstage: ret=%d\n", __func__, ret); } #endif /* CONFIG_BOOTSTAGE_STASH */ bootstage_mark_name(get_bootstage_id(true), spl_phase_name(spl_phase())); #if CONFIG_IS_ENABLED(LOG) ret = log_init(); if (ret) { debug("%s: Failed to set up logging\n", __func__); return ret; } #endif if (CONFIG_IS_ENABLED(OF_CONTROL) && !CONFIG_IS_ENABLED(OF_PLATDATA)) { ret = fdtdec_setup(); if (ret) { debug("fdtdec_setup() returned error %d\n", ret); return ret; } } if (CONFIG_IS_ENABLED(DM)) { bootstage_start(BOOTSTAGE_ID_ACCUM_DM_SPL, spl_phase() == PHASE_TPL ? "dm tpl" : "dm_spl"); /* With CONFIG_SPL_OF_PLATDATA, bring in all devices */ ret = dm_init_and_scan(!CONFIG_IS_ENABLED(OF_PLATDATA)); bootstage_accum(BOOTSTAGE_ID_ACCUM_DM_SPL); if (ret) { debug("dm_init_and_scan() returned error %d\n", ret); return ret; } } return 0; } void spl_set_bd(void) { /* * NOTE: On some platforms (e.g. x86) bdata may be in flash and not * writeable. */ if (!gd->bd) gd->bd = &bdata; } int spl_early_init(void) { int ret; debug("%s\n", __func__); ret = spl_common_init(true); if (ret) return ret; gd->flags |= GD_FLG_SPL_EARLY_INIT; return 0; } int spl_init(void) { int ret; bool setup_malloc = !(IS_ENABLED(CONFIG_SPL_STACK_R) && IS_ENABLED(CONFIG_SPL_SYS_MALLOC_SIMPLE)); debug("%s\n", __func__); if (!(gd->flags & GD_FLG_SPL_EARLY_INIT)) { ret = spl_common_init(setup_malloc); if (ret) return ret; } gd->flags |= GD_FLG_SPL_INIT; return 0; } #ifndef BOOT_DEVICE_NONE #define BOOT_DEVICE_NONE 0xdeadbeef #endif __weak void board_boot_order(u32 *spl_boot_list) { spl_boot_list[0] = spl_boot_device(); } static struct spl_image_loader *spl_ll_find_loader(uint boot_device) { struct spl_image_loader *drv = ll_entry_start(struct spl_image_loader, spl_image_loader); const int n_ents = ll_entry_count(struct spl_image_loader, spl_image_loader); struct spl_image_loader *entry; for (entry = drv; entry != drv + n_ents; entry++) { if (boot_device == entry->boot_device) return entry; } /* Not found */ return NULL; } static int spl_load_image(struct spl_image_info *spl_image, struct spl_image_loader *loader) { int ret; struct spl_boot_device bootdev; bootdev.boot_device = loader->boot_device; bootdev.boot_device_name = NULL; ret = loader->load_image(spl_image, &bootdev); #ifdef CONFIG_SPL_LEGACY_IMAGE_CRC_CHECK if (!ret && spl_image->dcrc_length) { /* check data crc */ ulong dcrc = crc32_wd(0, (unsigned char *)spl_image->dcrc_data, spl_image->dcrc_length, CHUNKSZ_CRC32); if (dcrc != spl_image->dcrc) { puts("SPL: Image data CRC check failed!\n"); ret = -EINVAL; } } #endif return ret; } /** * boot_from_devices() - Try loading a booting U-Boot from a list of devices * * @spl_image: Place to put the image details if successful * @spl_boot_list: List of boot devices to try * @count: Number of elements in spl_boot_list * @return 0 if OK, -ENODEV if there were no boot devices * if CONFIG_SHOW_ERRORS is enabled, returns -ENXIO if there were * devices but none worked */ static int boot_from_devices(struct spl_image_info *spl_image, u32 spl_boot_list[], int count) { int ret = -ENODEV; int i; for (i = 0; i < count && spl_boot_list[i] != BOOT_DEVICE_NONE; i++) { struct spl_image_loader *loader; int bootdev = spl_boot_list[i]; if (CONFIG_IS_ENABLED(SHOW_ERRORS)) ret = -ENXIO; loader = spl_ll_find_loader(bootdev); if (CONFIG_IS_ENABLED(SERIAL_SUPPORT) && CONFIG_IS_ENABLED(LIBCOMMON_SUPPORT) && !IS_ENABLED(CONFIG_SILENT_CONSOLE)) { if (loader) printf("Trying to boot from %s\n", spl_loader_name(loader)); else if (CONFIG_IS_ENABLED(SHOW_ERRORS)) printf(SPL_TPL_PROMPT "Unsupported Boot Device %d\n", bootdev); else puts(SPL_TPL_PROMPT "Unsupported Boot Device!\n"); } if (loader && !spl_load_image(spl_image, loader)) { spl_image->boot_device = bootdev; return 0; } } return ret; } #if defined(CONFIG_SPL_FRAMEWORK_BOARD_INIT_F) void board_init_f(ulong dummy) { if (CONFIG_IS_ENABLED(OF_CONTROL)) { int ret; ret = spl_early_init(); if (ret) { debug("spl_early_init() failed: %d\n", ret); hang(); } } preloader_console_init(); } #endif void board_init_r(gd_t *dummy1, ulong dummy2) { u32 spl_boot_list[] = { BOOT_DEVICE_NONE, BOOT_DEVICE_NONE, BOOT_DEVICE_NONE, BOOT_DEVICE_NONE, BOOT_DEVICE_NONE, }; struct spl_image_info spl_image; int ret; debug(">>" SPL_TPL_PROMPT "board_init_r()\n"); spl_set_bd(); #if defined(CONFIG_SYS_SPL_MALLOC_START) mem_malloc_init(CONFIG_SYS_SPL_MALLOC_START, CONFIG_SYS_SPL_MALLOC_SIZE); gd->flags |= GD_FLG_FULL_MALLOC_INIT; #endif if (!(gd->flags & GD_FLG_SPL_INIT)) { if (spl_init()) hang(); } #if !defined(CONFIG_PPC) && !defined(CONFIG_ARCH_MX6) /* * timer_init() does not exist on PPC systems. The timer is initialized * and enabled (decrementer) in interrupt_init() here. */ timer_init(); #endif if (CONFIG_IS_ENABLED(BLOBLIST)) { ret = bloblist_init(); if (ret) { debug("%s: Failed to set up bloblist: ret=%d\n", __func__, ret); puts(SPL_TPL_PROMPT "Cannot set up bloblist\n"); hang(); } } if (CONFIG_IS_ENABLED(HANDOFF)) { int ret; ret = setup_spl_handoff(); if (ret) { puts(SPL_TPL_PROMPT "Cannot set up SPL handoff\n"); hang(); } } #if CONFIG_IS_ENABLED(BOARD_INIT) spl_board_init(); #endif #if defined(CONFIG_SPL_WATCHDOG) && CONFIG_IS_ENABLED(WDT) initr_watchdog(); #endif if (IS_ENABLED(CONFIG_SPL_OS_BOOT) || CONFIG_IS_ENABLED(HANDOFF) || IS_ENABLED(CONFIG_SPL_ATF)) dram_init_banksize(); bootcount_inc(); memset(&spl_image, '\0', sizeof(spl_image)); #ifdef CONFIG_SYS_SPL_ARGS_ADDR spl_image.arg = (void *)CONFIG_SYS_SPL_ARGS_ADDR; #endif spl_image.boot_device = BOOT_DEVICE_NONE; board_boot_order(spl_boot_list); ret = boot_from_devices(&spl_image, spl_boot_list, ARRAY_SIZE(spl_boot_list)); if (ret) { if (CONFIG_IS_ENABLED(SHOW_ERRORS) && CONFIG_IS_ENABLED(LIBCOMMON_SUPPORT)) printf(SPL_TPL_PROMPT "failed to boot from all boot devices (err=%d)\n", ret); else puts(SPL_TPL_PROMPT "failed to boot from all boot devices\n"); hang(); } spl_perform_fixups(&spl_image); if (CONFIG_IS_ENABLED(HANDOFF)) { ret = write_spl_handoff(); if (ret) printf(SPL_TPL_PROMPT "SPL hand-off write failed (err=%d)\n", ret); } if (CONFIG_IS_ENABLED(BLOBLIST)) { ret = bloblist_finish(); if (ret) printf("Warning: Failed to finish bloblist (ret=%d)\n", ret); } #ifdef CONFIG_CPU_V7M spl_image.entry_point |= 0x1; #endif switch (spl_image.os) { case IH_OS_U_BOOT: debug("Jumping to %s...\n", spl_phase_name(spl_next_phase())); break; #if CONFIG_IS_ENABLED(ATF) case IH_OS_ARM_TRUSTED_FIRMWARE: debug("Jumping to U-Boot via ARM Trusted Firmware\n"); spl_fixup_fdt(spl_image.fdt_addr); spl_invoke_atf(&spl_image); break; #endif #if CONFIG_IS_ENABLED(OPTEE) case IH_OS_TEE: debug("Jumping to U-Boot via OP-TEE\n"); spl_board_prepare_for_optee(spl_image.fdt_addr); spl_optee_entry(NULL, NULL, spl_image.fdt_addr, (void *)spl_image.entry_point); break; #endif #if CONFIG_IS_ENABLED(OPENSBI) case IH_OS_OPENSBI: debug("Jumping to U-Boot via RISC-V OpenSBI\n"); spl_invoke_opensbi(&spl_image); break; #endif #ifdef CONFIG_SPL_OS_BOOT case IH_OS_LINUX: debug("Jumping to Linux\n"); #if defined(CONFIG_SYS_SPL_ARGS_ADDR) spl_fixup_fdt((void *)CONFIG_SYS_SPL_ARGS_ADDR); #endif spl_board_prepare_for_linux(); jump_to_image_linux(&spl_image); #endif default: debug("Unsupported OS image.. Jumping nevertheless..\n"); } #if CONFIG_VAL(SYS_MALLOC_F_LEN) && !defined(CONFIG_SYS_SPL_MALLOC_SIZE) debug("SPL malloc() used 0x%lx bytes (%ld KB)\n", gd->malloc_ptr, gd->malloc_ptr / 1024); #endif bootstage_mark_name(get_bootstage_id(false), "end phase"); #ifdef CONFIG_BOOTSTAGE_STASH ret = bootstage_stash((void *)CONFIG_BOOTSTAGE_STASH_ADDR, CONFIG_BOOTSTAGE_STASH_SIZE); if (ret) debug("Failed to stash bootstage: err=%d\n", ret); #endif spl_board_prepare_for_boot(); jump_to_image_no_args(&spl_image); } /* * This requires UART clocks to be enabled. In order for this to work the * caller must ensure that the gd pointer is valid. */ void preloader_console_init(void) { #ifdef CONFIG_SPL_SERIAL_SUPPORT gd->baudrate = CONFIG_BAUDRATE; serial_init(); /* serial communications setup */ gd->have_console = 1; #if CONFIG_IS_ENABLED(BANNER_PRINT) puts("\nU-Boot " SPL_TPL_NAME " " PLAIN_VERSION " (" U_BOOT_DATE " - " U_BOOT_TIME " " U_BOOT_TZ ")\n"); #endif #ifdef CONFIG_SPL_DISPLAY_PRINT spl_display_print(); #endif #endif } /** * This function is called before the stack is changed from initial stack to * relocated stack. It tries to dump the stack size used */ __weak void spl_relocate_stack_check(void) { #if CONFIG_IS_ENABLED(SYS_REPORT_STACK_F_USAGE) ulong init_sp = gd->start_addr_sp; ulong stack_bottom = init_sp - CONFIG_VAL(SIZE_LIMIT_PROVIDE_STACK); u8 *ptr = (u8 *)stack_bottom; ulong i; for (i = 0; i < CONFIG_VAL(SIZE_LIMIT_PROVIDE_STACK); i++) { if (*ptr != CONFIG_VAL(SYS_STACK_F_CHECK_BYTE)) break; ptr++; } printf("SPL initial stack usage: %lu bytes\n", CONFIG_VAL(SIZE_LIMIT_PROVIDE_STACK) - i); #endif } /** * spl_relocate_stack_gd() - Relocate stack ready for board_init_r() execution * * Sometimes board_init_f() runs with a stack in SRAM but we want to use SDRAM * for the main board_init_r() execution. This is typically because we need * more stack space for things like the MMC sub-system. * * This function calculates the stack position, copies the global_data into * place, sets the new gd (except for ARM, for which setting GD within a C * function may not always work) and returns the new stack position. The * caller is responsible for setting up the sp register and, in the case * of ARM, setting up gd. * * All of this is done using the same layout and alignments as done in * board_init_f_init_reserve() / board_init_f_alloc_reserve(). * * @return new stack location, or 0 to use the same stack */ ulong spl_relocate_stack_gd(void) { #ifdef CONFIG_SPL_STACK_R gd_t *new_gd; ulong ptr = CONFIG_SPL_STACK_R_ADDR; if (CONFIG_IS_ENABLED(SYS_REPORT_STACK_F_USAGE)) spl_relocate_stack_check(); #if defined(CONFIG_SPL_SYS_MALLOC_SIMPLE) && CONFIG_VAL(SYS_MALLOC_F_LEN) if (CONFIG_SPL_STACK_R_MALLOC_SIMPLE_LEN) { debug("SPL malloc() before relocation used 0x%lx bytes (%ld KB)\n", gd->malloc_ptr, gd->malloc_ptr / 1024); ptr -= CONFIG_SPL_STACK_R_MALLOC_SIMPLE_LEN; gd->malloc_base = ptr; gd->malloc_limit = CONFIG_SPL_STACK_R_MALLOC_SIMPLE_LEN; gd->malloc_ptr = 0; } #endif /* Get stack position: use 8-byte alignment for ABI compliance */ ptr = CONFIG_SPL_STACK_R_ADDR - roundup(sizeof(gd_t),16); new_gd = (gd_t *)ptr; memcpy(new_gd, (void *)gd, sizeof(gd_t)); #if CONFIG_IS_ENABLED(DM) dm_fixup_for_gd_move(new_gd); #endif #if !defined(CONFIG_ARM) && !defined(CONFIG_RISCV) gd = new_gd; #endif return ptr; #else return 0; #endif } #if defined(CONFIG_BOOTCOUNT_LIMIT) && \ ((!defined(CONFIG_TPL_BUILD) && !defined(CONFIG_SPL_BOOTCOUNT_LIMIT)) || \ (defined(CONFIG_TPL_BUILD) && !defined(CONFIG_TPL_BOOTCOUNT_LIMIT))) void bootcount_store(ulong a) { } ulong bootcount_load(void) { return 0; } #endif
最新发布
11-11
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值