关于tensorflow.placeholder()理解

本文深入解析了TensorFlow中tf.placeholder的使用方法,通过示例代码展示了如何定义占位符,以及如何在会话中通过feed_dict参数传递数据,实现数据集的动态更新。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

对于这样一条语句
x = tf.placeholder("float",shape=(1,2))
我的理解是在内存中开辟了一块内存,大小为1x2的float数组;
然后再程序的运行过程中,可不断用以下语句来“喂”它,达到随时改变数据集的目的
feed_dict={x:[[1,2]]}
测试代码

#coding=utf-8
import tensorflow as tf
x = tf.placeholder("float",shape=(1,2))
sess = tf.Session()
sess.run(tf.global_variables_initializer())
a = x
y = sess.run(a, feed_dict={x:[[1,2]]})
print(y)
sess.close
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值