nnunet 报错cannot import name ‘GradScaler‘ from ‘torch‘

部署运行你感兴趣的模型镜像

首先是在报错里面去找相应的代码文件,我是通过git github上的nnunet进行下载的,路径应该是在前面是你git的路径,然后nnunet\nnunetv2\training\nnUNetTrainer.py这个文件,然后找到from torch import GradScaler 这个报错改成from torch.cuda.amp import GradScaler后还是报错,以及由于是win系统,由此多线程还出现报错,因而需要改进的以下3个方面:

1. 禁用AMP(自动混合精度)以避免GradScaler错误。

2. 在Windows上禁用多线程数据加载,以避免多进程问题。

3. 在数据加载部分,强制使用单线程。

接下来就可以开始训啦

下面是修改完整的nnUNetTrainer.py,可以直接进行替换

import inspect
import multiprocessing
import os
import shutil
import sys
import warnings
from copy import deepcopy
from datetime import datetime
from time import time, sleep
from typing import Tuple, Union, List

import numpy as np
import torch
from batchgenerators.dataloading.multi_threaded_augmenter import MultiThreadedAugmenter
from batchgenerators.dataloading.nondet_multi_threaded_augmenter import NonDetMultiThreadedAugmenter
from batchgenerators.dataloading.single_threaded_augmenter import SingleThreadedAugmenter
from batchgenerators.utilities.file_and_folder_operations import join, load_json, isfile, save_json, maybe_mkdir_p
from batchgeneratorsv2.helpers.scalar_type import RandomScalar
from batchgeneratorsv2.transforms.base.basic_transform import BasicTransform
from batchgeneratorsv2.transforms.intensity.brightness import MultiplicativeBrightnessTransform
from batchgeneratorsv2.transforms.intensity.contrast import ContrastTransform, BGContrast
from batchgeneratorsv2.transforms.intensity.gamma import GammaTransform
from batchgeneratorsv2.transforms.intensity.gaussian_noise import GaussianNoiseTransform
from batchgeneratorsv2.transforms.nnunet.random_binary_operator import ApplyRandomBinaryOperatorTransform
from batchgeneratorsv2.transforms.nnunet.remove_connected_components import \
    RemoveRandomConnectedComponentFromOneHotEncodingTransform
from batchgeneratorsv2.transforms.nnunet.seg_to_onehot import MoveSegAsOneHotToDataTransform
from batchgeneratorsv2.transforms.noise.gaussian_blur import GaussianBlurTransform
from batchgeneratorsv2.transforms.spatial.low_resolution import SimulateLowResolutionTransform
from batchgeneratorsv2.transforms.spatial.mirroring import MirrorTransform
from batchgeneratorsv2.transforms.spatial.spatial import SpatialTransform
from batchgeneratorsv2.transforms.utils.compose import ComposeTransforms
from batchgeneratorsv2.transforms.utils.deep_supervision_downsampling import DownsampleSegForDSTransform
from batchgeneratorsv2.transforms.utils.nnunet_masking import MaskImageTransform
from batchgeneratorsv2.transforms.utils.pseudo2d import Convert3DTo2DTransform, Convert2DTo3DTransform
from batchgeneratorsv2.transforms.utils.random import RandomTransform
from batchgeneratorsv2.transforms.utils.remove_label import RemoveLabelTansform
from batchgeneratorsv2.transforms.utils.seg_to_regions import ConvertSegmentationToRegionsTransform
from torch import autocast, nn
from torch import distributed as dist
from torch._dynamo import OptimizedModule
from torch.cuda import device_count
#from torch import GradScaler
from torch.cuda.amp import GradScaler
from torch.nn.parallel import DistributedDataParallel as DDP

from nnunetv2.configuration import ANISO_THRESHOLD, default_num_processes
from nnunetv2.evaluation.evaluate_predictions import compute_metrics_on_folder
from nnunetv2.inference.export_prediction import export_prediction_from_logits, resample_and_save
from nnunetv2.inference.predict_from_raw_data import nnUNetPredictor
from nnunetv2.inference.sliding_window_prediction import compute_gaussian
from nnunetv2.paths import nnUNet_preprocessed, nnUNet_results
from nnunetv2.training.data_augmentation.compute_initial_patch_size import get_patch_size
from nnunetv2.training.dataloading.nnunet_dataset import infer_dataset_class
from nnunetv2.training.dataloading.data_loader import nnUNetDataLoader
from nnunetv2.training.logging.nnunet_logger import nnUNetLogger
from nnunetv2.training.loss.compound_losses import DC_and_CE_loss, DC_and_BCE_loss
from nnunetv2.training.loss.deep_supervision import DeepSupervisionWrapper
from nnunetv2.training.loss.dice import get_tp_fp_fn_tn, MemoryEfficientSoftDiceLoss
from nnunetv2.training.lr_scheduler.polylr import PolyLRScheduler
from nnunetv2.utilities.collate_outputs import collate_outputs
from nnunetv2.utilities.crossval_split import generate_crossval_split
from nnunetv2.utilities.default_n_proc_DA import get_allowed_n_proc_DA
from nnunetv2.utilities.file_path_utilities import check_workers_alive_and_busy
from nnunetv2.utilities.get_network_from_plans import get_network_from_plans
from nnunetv2.utilities.helpers import empty_cache, dummy_context
from nnunetv2.utilities.label_handling.label_handling import convert_labelmap_to_one_hot, determine_num_input_channels
from nnunetv2.utilities.plans_handling.plans_handler import PlansManager


class nnUNetTrainer(object):
    def __init__(self, plans: dict, configuration: str, fold: int, dataset_json: dict,
                 device: torch.device = torch.device('cuda')):
        # Windows 下禁用多线程
        if os.name == 'nt':
            os.environ['nnUNet_n_proc_DA'] = '0'
            os.environ['nnUNet_def_n_proc'] = '0'

        # From https://grugbrain.dev/. Worth a read ya big brains ;-)

        # apex predator of grug is complexity
        # complexity bad
        # say again:
        # complexity very bad
        # you say now:
        # complexity very, very bad
        # given choice between complexity or one on one against t-rex, grug take t-rex: at least grug see t-rex
        # complexity is spirit demon that enter codebase through well-meaning but ultimately very clubbable non grug-brain developers and project managers who not fear complexity spirit demon or even know about sometime
        # one day code base understandable and grug can get work done, everything good!
        # next day impossible: complexity demon spirit has entered code and very dangerous situation!

        # OK OK I am guilty. But I tried.
        # https://www.osnews.com/images/comics/wtfm.jpg
        # https://i.pinimg.com/originals/26/b2/50/26b250a738ea4abc7a5af4d42ad93af0.jpg

        self.is_ddp = dist.is_available() and dist.is_initialized()
        self.local_rank = 0 if not self.is_ddp else dist.get_rank()

        self.device = device

        # print what device we are using
        if self.is_ddp:  # implicitly it's clear that we use cuda in this case
            print(f"I am local rank {self.local_rank}. {device_count()} GPUs are available. The world size is "
                  f"{dist.get_world_size()}."
                  f"Setting device to {self.device}")
            self.device = torch.device(type='cuda', index=self.local_rank)
        else:
            if self.device.type == 'cuda':
                # we might want to let the user pick this but for now please pick the correct GPU with CUDA_VISIBLE_DEVICES=X
                self.device = torch.device(type='cuda', index=0)
            print(f"Using device: {self.device}")

        # loading and saving this class for continuing from checkpoint should not happen based on pickling. This
        # would also pickle the network etc. Bad, bad. Instead we just reinstantiate and then load the checkpoint we
        # need. So let's save the init args
        self.my_init_kwargs = {}
        for k in inspect.signature(self.__init__).parameters.keys():
            self.my_init_kwargs[k] = locals()[k]

        ###  Saving all the init args into class variables for later access
        self.plans_manager = PlansManager(plans)
        self.configuration_manager = self.plans_manager.get_configuration(configuration)
        self.configuration_name = configuration
        self.dataset_json = dataset_json
        self.fold = fold

        ### Setting all the folder names. We need to make sure things don't crash in case we are just running
        # inference and some of the folders may not be defined!
        self.preprocessed_dataset_folder_base = join(nnUNet_preprocessed, self.plans_manager.dataset_name) \
            if nnUNet_preprocessed is not None else None
        self.output_folder_base = join(nnUNet_results, self.plans_manager.dataset_name,
                                       self.__class__.__name__ + '__' + self.plans_manager.plans_name + "__" + configuration) \
            if nnUNet_results is not None else None
        self.output_folder = join(self.output_folder_base, f'fold_{fold}')

        self.preprocessed_dataset_folder = join(self.preprocessed_dataset_folder_base,
                                                self.configuration_manager.data_identifier)
        self.dataset_class = None  # -> initialize
        # unlike the previous nnunet folder_with_segs_from_previous_stage is now part of the plans. For now it has to
        # be a different configuration in the same plans
        # IMPORTANT! the mapping must be bijective, so lowres must point to fullres and vice versa (using
        # "previous_stage" and "next_stage"). Otherwise it won't work!
        self.is_cascaded = self.configuration_manager.previous_stage_name is not None
        self.folder_with_segs_from_previous_stage = \
            join(nnUNet_results, self.plans_manager.dataset_name,
                 self.__class__.__name__ + '__' + self.plans_manager.plans_name + "__" +
                 self.configuration_manager.previous_stage_name, 'predicted_next_stage', self.configuration_name) \
                if self.is_cascaded else None

        ### Some hyperparameters for you to fiddle with
        self.initial_lr = 1e-2
        self.weight_decay = 3e-5
        self.oversample_foreground_percent = 0.33
        self.probabilistic_oversampling = False
        self.num_iterations_per_epoch = 250
        self.num_val_iterations_per_epoch = 50
        self.num_epochs = 1000
        self.current_epoch = 0
        self.enable_deep_supervision = True

        ### Dealing with labels/regions
        self.label_manager = self.plans_manager.get_label_manager(dataset_json)
        # labels can either be a list of int (regular training) or a list of tuples of int (region-based training)
        # needed for predictions. We do sigmoid in case of (overlapping) regions

        self.num_input_channels = None  # -> self.initialize()
        self.network = None  # -> self.build_network_architecture()
        self.optimizer = self.lr_scheduler = None  # -> self.initialize
        # 禁用 AMP
        self.grad_scaler = None
        self.loss = None  # -> self.initialize

        ### Simple logging. Don't take that away from me!
        # initialize log file. This is just our log for the print statements etc. Not to be confused with lightning
        # logging
        timestamp = datetime.now()
        maybe_mkdir_p(self.output_folder)
        self.log_file = join(self.output_folder, "training_log_%d_%d_%d_%02.0d_%02.0d_%02.0d.txt" %
                             (timestamp.year, timestamp.month, timestamp.day, timestamp.hour, timestamp.minute,
                              timestamp.second))
        self.logger = nnUNetLogger()

        ### placeholders
        self.dataloader_train = self.dataloader_val = None  # see on_train_start

        ### initializing stuff for remembering things and such
        self._best_ema = None

        ### inference things
        self.inference_allowed_mirroring_axes = None  # this variable is set in
        # self.configure_rotation_dummyDA_mirroring_and_inital_patch_size and will be saved in checkpoints

        ### checkpoint saving stuff
        self.save_every = 50
        self.disable_checkpointing = False

        self.was_initialized = False

        self.print_to_log_file("\n#######################################################################\n"
                               "Please cite the following paper when using nnU-Net:\n"
                               "Isensee, F., Jaeger, P. F., Kohl, S. A., Petersen, J., & Maier-Hein, K. H. (2021). "
                               "nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. "
                               "Nature methods, 18(2), 203-211.\n"
                               "#######################################################################\n",
                               also_print_to_console=True, add_timestamp=False)

    def initialize(self):
        if not self.was_initialized:
            ## DDP batch size and oversampling can differ between workers and needs adaptation
            # we need to change the batch size in DDP because we don't use any of those distributed samplers
            self._set_batch_size_and_oversample()

            self.num_input_channels = determine_num_input_channels(self.plans_manager, self.configuration_manager,
                                                                   self.dataset_json)

            self.network = self.build_network_architecture(
                self.configuration_manager.network_arch_class_name,
                self.configuration_manager.network_arch_init_kwargs,
                self.configuration_manager.network_arch_init_kwargs_req_import,
                self.num_input_channels,
                self.label_manager.num_segmentation_heads,
                self.enable_deep_supervision
            ).to(self.device)
            # compile network for free speedup
            if self._do_i_compile():
                self.print_to_log_file('Using torch.compile...')
                self.network = torch.compile(self.network)

            self.optimizer, self.lr_scheduler = self.configure_optimizers()
            # if ddp, wrap in DDP wrapper
            if self.is_ddp:
                self.network = torch.nn.SyncBatchNorm.convert_sync_batchnorm(self.network)
                self.network = DDP(self.network, device_ids=[self.local_rank])

            self.loss = self._build_loss()

            self.dataset_class = infer_dataset_class(self.preprocessed_dataset_folder)

            # torch 2.2.2 crashes upon compiling CE loss
            # if self._do_i_compile():
            #     self.loss = torch.compile(self.loss)
            self.was_initialized = True
        else:
            raise RuntimeError("You have called self.initialize even though the trainer was already initialized. "
                               "That should not happen.")

    def _do_i_compile(self):
        # new default: compile is enabled!

        # compile does not work on mps
        if self.device == torch.device('mps'):
            if 'nnUNet_compile' in os.environ.keys() and os.environ['nnUNet_compile'].lower() in ('true', '1', 't'):
                self.print_to_log_file("INFO: torch.compile disabled because of unsupported mps device")
            return False

        # CPU compile crashes for 2D models. Not sure if we even want to support CPU compile!? Better disable
        if self.device == torch.device('cpu'):
            if 'nnUNet_compile' in os.environ.keys() and os.environ['nnUNet_compile'].lower() in ('true', '1', 't'):
                self.print_to_log_file("INFO: torch.compile disabled because device is CPU")
            return False

        # default torch.compile doesn't work on windows because there are apparently no triton wheels for it
        # https://discuss.pytorch.org/t/windows-support-timeline-for-torch-compile/182268/2
        if os.name == 'nt':
            if 'nnUNet_compile' in os.environ.keys() and os.environ['nnUNet_compile'].lower() in ('true', '1', 't'):
                self.print_to_log_file("INFO: torch.compile disabled because Windows is not natively supported. If "
                                       "you know what you are doing, check https://discuss.pytorch.org/t/windows-support-timeline-for-torch-compile/182268/2")
            return False

        if 'nnUNet_compile' not in os.environ.keys():
            return True
        else:
            return os.environ['nnUNet_compile'].lower() in ('true', '1', 't')

    def _save_debug_information(self):
        # saving some debug information
        if self.local_rank == 0:
            dct = {}
            for k in self.__dir__():
                if not k.startswith("__"):
                    if not callable(getattr(self, k)) or k in ['loss', ]:
                        dct[k] = str(getattr(self, k))
                    elif k in ['network', ]:
                        dct[k] = str(getattr(self, k).__class__.__name__)
                    else:
                        # print(k)
                        pass
                if k in ['dataloader_train', 'dataloader_val']:
                    if hasattr(getattr(self, k), 'generator'):
                        dct[k + '.generator'] = str(getattr(self, k).generator)
                    if hasattr(getattr(self, k), 'num_processes'):
                        dct[k + '.num_processes'] = str(getattr(self, k).num_processes)
                    if hasattr(getattr(self, k), 'transform'):
                        dct[k + '.transform'] = str(getattr(self, k).transform)
            import subprocess
            hostname = subprocess.getoutput(['hostname'])
            dct['hostname'] = hostname
            torch_version = torch.__version__
            if self.device.type == 'cuda':
                gpu_name = torch.cuda.get_device_name()
                dct['gpu_name'] = gpu_name
                cudnn_version = torch.backends.cudnn.version()
            else:
                cudnn_version = 'None'
            dct['device'] = str(self.device)
            dct['torch_version'] = torch_version
            dct['cudnn_version'] = cudnn_version
            save_json(dct, join(self.output_folder, "debug.json"))

    @staticmethod
    def build_network_architecture(architecture_class_name: str,
                                   arch_init_kwargs: dict,
                                   arch_init_kwargs_req_import: Union[List[str], Tuple[str, ...]],
                                   num_input_channels: int,
                                   num_output_channels: int,
                                   enable_deep_supervision: bool = True) -> nn.Module:
        """
        This is where you build the architecture according to the plans. There is no obligation to use
        get_network_from_plans, this is just a utility we use for the nnU-Net default architectures. You can do what
        you want. Even ignore the plans and just return something static (as long as it can process the requested
        patch size)
        but don't bug us with your bugs arising from fiddling with this :-P
        This is the function that is called in inference as well! This is needed so that all network architecture
        variants can be loaded at inference time (inference will use the same nnUNetTrainer that was used for
        training, so if you change the network architecture during training by deriving a new trainer class then
        inference will know about it).

        If you need to know how many segmentation outputs your custom architecture needs to have, use the following snippet:
        > label_manager = plans_manager.get_label_manager(dataset_json)
        > label_manager.num_segmentation_heads
        (why so complicated? -> We can have either classical training (classes) or regions. If we have regions,
        the number of outputs is != the number of classes. Also there is the ignore label for which no output
        should be generated. label_manager takes care of all that for you.)

        """
        return get_network_from_plans(
            architecture_class_name,
            arch_init_kwargs,
            arch_init_kwargs_req_import,
            num_input_channels,
            num_output_channels,
            allow_init=True,
            deep_supervision=enable_deep_supervision)

    def _get_deep_supervision_scales(self):
        if self.enable_deep_supervision:
            deep_supervision_scales = list(list(i) for i in 1 / np.cumprod(np.vstack(
                self.configuration_manager.pool_op_kernel_sizes), axis=0))[:-1]
        else:
            deep_supervision_scales = None  # for train and val_transforms
        return deep_supervision_scales

    def _set_batch_size_and_oversample(self):
        if not self.is_ddp:
            # set batch size to what the plan says, leave oversample untouched
            self.batch_size = self.configuration_manager.batch_size
        else:
            # batch size is distributed over DDP workers and we need to change oversample_percent for each worker

            world_size = dist.get_world_size()
            my_rank = dist.get_rank()

            global_batch_size = self.configuration_manager.batch_size
            assert global_batch_size >= world_size, 'Cannot run DDP if the batch size is smaller than the number of ' \
                                                    'GPUs... Duh.'

            batch_size_per_GPU = [global_batch_size // world_size] * world_size
            batch_size_per_GPU = [batch_size_per_GPU[i] + 1
                                  if (batch_size_per_GPU[i] * world_size + i) < global_batch_size
                                  else batch_size_per_GPU[i]
                                  for i in range(len(batch_size_per_GPU))]
            assert sum(batch_size_per_GPU) == global_batch_size

            sample_id_low = 0 if my_rank == 0 else np.sum(batch_size_per_GPU[:my_rank])
            sample_id_high = np.sum(batch_size_per_GPU[:my_rank + 1])

            # This is how oversampling is determined in DataLoader
            # round(self.batch_size * (1 - self.oversample_foreground_percent))
            # We need to use the same scheme here because an oversample of 0.33 with a batch size of 2 will be rounded
            # to an oversample of 0.5 (1 sample random, one oversampled). This may get lost if we just numerically
            # compute oversample
            oversample = [True if not i < round(global_batch_size * (1 - self.oversample_foreground_percent)) else False
                          for i in range(global_batch_size)]

            if sample_id_high / global_batch_size < (1 - self.oversample_foreground_percent):
                oversample_percent = 0.0
            elif sample_id_low / global_batch_size > (1 - self.oversample_foreground_percent):
                oversample_percent = 1.0
            else:
                oversample_percent = sum(oversample[sample_id_low:sample_id_high]) / batch_size_per_GPU[my_rank]

            print("worker", my_rank, "oversample", oversample_percent)
            print("worker", my_rank, "batch_size", batch_size_per_GPU[my_rank])

            self.batch_size = batch_size_per_GPU[my_rank]
            self.oversample_foreground_percent = oversample_percent

    def _build_loss(self):
        if self.label_manager.has_regions:
            loss = DC_and_BCE_loss({},
                                   {'batch_dice': self.configuration_manager.batch_dice,
                                    'do_bg': True, 'smooth': 1e-5, 'ddp': self.is_ddp},
                                   use_ignore_label=self.label_manager.ignore_label is not None,
                                   dice_class=MemoryEfficientSoftDiceLoss)
        else:
            loss = DC_and_CE_loss({'batch_dice': self.configuration_manager.batch_dice,
                                   'smooth': 1e-5, 'do_bg': False, 'ddp': self.is_ddp}, {}, weight_ce=1, weight_dice=1,
                                  ignore_label=self.label_manager.ignore_label, dice_class=MemoryEfficientSoftDiceLoss)

        if self._do_i_compile():
            loss.dc = torch.compile(loss.dc)

        # we give each output a weight which decreases exponentially (division by 2) as the resolution decreases
        # this gives higher resolution outputs more weight in the loss

        if self.enable_deep_supervision:
            deep_supervision_scales = self._get_deep_supervision_scales()
            weights = np.array([1 / (2 ** i) for i in range(len(deep_supervision_scales))])
            if self.is_ddp and not self._do_i_compile():
                # very strange and stupid interaction. DDP crashes and complains about unused parameters due to
                # weights[-1] = 0. Interestingly this crash doesn't happen with torch.compile enabled. Strange stuff.
                # Anywho, the simple fix is to set a very low weight to this.
                weights[-1] = 1e-6
            else:
                weights[-1] = 0

            # we don't use the lowest 2 outputs. Normalize weights so that they sum to 1
            weights = weights / weights.sum()
            # now wrap the loss
            loss = DeepSupervisionWrapper(loss, weights)

        return loss

    def configure_rotation_dummyDA_mirroring_and_inital_patch_size(self):
        """
        This function is stupid and certainly one of the weakest spots of this implementation. Not entirely sure how we can fix it.
        """
        patch_size = self.configuration_manager.patch_size
        dim = len(patch_size)
        # todo rotation should be defined dynamically based on patch size (more isotropic patch sizes = more rotation)
        if dim == 2:
            do_dummy_2d_data_aug = False
            # todo revisit this parametrization
            if max(patch_size) / min(patch_size) > 1.5:
                rotation_for_DA = (-15. / 360 * 2. * np.pi, 15. / 360 * 2. * np.pi)
            else:
                rotation_for_DA = (-180. / 360 * 2. * np.pi, 180. / 360 * 2. * np.pi)
            mirror_axes = (0, 1)
        elif dim == 3:
            # todo this is not ideal. We could also have patch_size (64, 16, 128) in which case a full 180deg 2d rot would be bad
            # order of the axes is determined by spacing, not image size
            do_dummy_2d_data_aug = (max(patch_size) / patch_size[0]) > ANISO_THRESHOLD
            if do_dummy_2d_data_aug:
                # why do we rotate 180 deg here all the time? We should also restrict it
                rotation_for_DA = (-180. / 360 * 2. * np.pi, 180. / 360 * 2. * np.pi)
            else:
                rotation_for_DA = (-30. / 360 * 2. * np.pi, 30. / 360 * 2. * np.pi)
            mirror_axes = (0, 1, 2)
        else:
            raise RuntimeError()

        # todo this function is stupid. It doesn't even use the correct scale range (we keep things as they were in the
        #  old nnunet for now)
        initial_patch_size = get_patch_size(patch_size[-dim:],
                                            rotation_for_DA,
                                            rotation_for_DA,
                                            rotation_for_DA,
                                            (0.85, 1.25))
        if do_dummy_2d_data_aug:
            initial_patch_size[0] = patch_size[0]

        self.print_to_log_file(f'do_dummy_2d_data_aug: {do_dummy_2d_data_aug}')
        self.inference_allowed_mirroring_axes = mirror_axes

        return rotation_for_DA, do_dummy_2d_data_aug, initial_patch_size, mirror_axes

    def print_to_log_file(self, *args, also_print_to_console=True, add_timestamp=True):
        if self.local_rank == 0:
            timestamp = time()
            dt_object = datetime.fromtimestamp(timestamp)

            if add_timestamp:
                args = (f"{dt_object}:", *args)

            successful = False
            max_attempts = 5
            ctr = 0
            while not successful and ctr < max_attempts:
                try:
                    with open(self.log_file, 'a+') as f:
                        for a in args:
                            f.write(str(a))
                            f.write(" ")
                        f.write("\n")
                    successful = True
                except IOError:
                    print(f"{datetime.fromtimestamp(timestamp)}: failed to log: ", sys.exc_info())
                    sleep(0.5)
                    ctr += 1
            if also_print_to_console:
                print(*args)
        elif also_print_to_console:
            print(*args)

    def print_plans(self):
        if self.local_rank == 0:
            dct = deepcopy(self.plans_manager.plans)
            del dct['configurations']
            self.print_to_log_file(f"\nThis is the configuration used by this "
                                   f"training:\nConfiguration name: {self.configuration_name}\n",
                                   self.configuration_manager, '\n', add_timestamp=False)
            self.print_to_log_file('These are the global plan.json settings:\n', dct, '\n', add_timestamp=False)

    def configure_optimizers(self):
        optimizer = torch.optim.SGD(self.network.parameters(), self.initial_lr, weight_decay=self.weight_decay,
                                    momentum=0.99, nesterov=True)
        lr_scheduler = PolyLRScheduler(optimizer, self.initial_lr, self.num_epochs)
        return optimizer, lr_scheduler

    def plot_network_architecture(self):
        if self._do_i_compile():
            self.print_to_log_file("Unable to plot network architecture: nnUNet_compile is enabled!")
            return

        if self.local_rank == 0:
            try:
                # raise NotImplementedError('hiddenlayer no longer works and we do not have a viable alternative :-(')
                # pip install git+https://github.com/saugatkandel/hiddenlayer.git

                # from torchviz import make_dot
                # # not viable.
                # make_dot(tuple(self.network(torch.rand((1, self.num_input_channels,
                #                                         *self.configuration_manager.patch_size),
                #                                        device=self.device)))).render(
                #     join(self.output_folder, "network_architecture.pdf"), format='pdf')
                # self.optimizer.zero_grad()

                # broken.

                import hiddenlayer as hl
                g = hl.build_graph(self.network,
                                   torch.rand((1, self.num_input_channels,
                                               *self.configuration_manager.patch_size),
                                              device=self.device),
                                   transforms=None)
                g.save(join(self.output_folder, "network_architecture.pdf"))
                del g
            except Exception as e:
                self.print_to_log_file("Unable to plot network architecture:")
                self.print_to_log_file(e)

                # self.print_to_log_file("\nprinting the network instead:\n")
                # self.print_to_log_file(self.network)
                # self.print_to_log_file("\n")
            finally:
                empty_cache(self.device)

    def do_split(self):
        """
        The default split is a 5 fold CV on all available training cases. nnU-Net will create a split (it is seeded,
        so always the same) and save it as splits_final.json file in the preprocessed data directory.
        Sometimes you may want to create your own split for various reasons. For this you will need to create your own
        splits_final.json file. If this file is present, nnU-Net is going to use it and whatever splits are defined in
        it. You can create as many splits in this file as you want. Note that if you define only 4 splits (fold 0-3)
        and then set fold=4 when training (that would be the fifth split), nnU-Net will print a warning and proceed to
        use a random 80:20 data split.
        :return:
        """
        if self.dataset_class is None:
            self.dataset_class = infer_dataset_class(self.preprocessed_dataset_folder)

        if self.fold == "all":
            # if fold==all then we use all images for training and validation
            case_identifiers = self.dataset_class.get_identifiers(self.preprocessed_dataset_folder)
            tr_keys = case_identifiers
            val_keys = tr_keys
        else:
            splits_file = join(self.preprocessed_dataset_folder_base, "splits_final.json")
            dataset = self.dataset_class(self.preprocessed_dataset_folder,
                                         identifiers=None,
                                         folder_with_segs_from_previous_stage=self.folder_with_segs_from_previous_stage)
            # if the split file does not exist we need to create it
            if not isfile(splits_file):
                self.print_to_log_file("Creating new 5-fold cross-validation split...")
                all_keys_sorted = list(np.sort(list(dataset.identifiers)))
                splits = generate_crossval_split(all_keys_sorted, seed=12345, n_splits=5)
                save_json(splits, splits_file)

            else:
                self.print_to_log_file("Using splits from existing split file:", splits_file)
                splits = load_json(splits_file)
                self.print_to_log_file(f"The split file contains {len(splits)} splits.")

            self.print_to_log_file("Desired fold for training: %d" % self.fold)
            if self.fold < len(splits):
                tr_keys = splits[self.fold]['train']
                val_keys = splits[self.fold]['val']
                self.print_to_log_file("This split has %d training and %d validation cases."
                                       % (len(tr_keys), len(val_keys)))
            else:
                self.print_to_log_file("INFO: You requested fold %d for training but splits "
                                       "contain only %d folds. I am now creating a "
                                       "random (but seeded) 80:20 split!" % (self.fold, len(splits)))
                # if we request a fold that is not in the split file, create a random 80:20 split
                rnd = np.random.RandomState(seed=12345 + self.fold)
                keys = np.sort(list(dataset.identifiers))
                idx_tr = rnd.choice(len(keys), int(len(keys) * 0.8), replace=False)
                idx_val = [i for i in range(len(keys)) if i not in idx_tr]
                tr_keys = [keys[i] for i in idx_tr]
                val_keys = [keys[i] for i in idx_val]
                self.print_to_log_file("This random 80:20 split has %d training and %d validation cases."
                                       % (len(tr_keys), len(val_keys)))
            if any([i in val_keys for i in tr_keys]):
                self.print_to_log_file('WARNING: Some validation cases are also in the training set. Please check the '
                                       'splits.json or ignore if this is intentional.')
        return tr_keys, val_keys

    def get_tr_and_val_datasets(self):
        # create dataset split
        tr_keys, val_keys = self.do_split()

        # load the datasets for training and validation. Note that we always draw random samples so we really don't
        # care about distributing training cases across GPUs.
        dataset_tr = self.dataset_class(self.preprocessed_dataset_folder, tr_keys,
                                        folder_with_segs_from_previous_stage=self.folder_with_segs_from_previous_stage)
        dataset_val = self.dataset_class(self.preprocessed_dataset_folder, val_keys,
                                         folder_with_segs_from_previous_stage=self.folder_with_segs_from_previous_stage)
        return dataset_tr, dataset_val

    def get_dataloaders(self):
        if self.dataset_class is None:
            self.dataset_class = infer_dataset_class(self.preprocessed_dataset_folder)

        # we use the patch size to determine whether we need 2D or 3D dataloaders. We also use it to determine whether
        # we need to use dummy 2D augmentation (in case of 3D training) and what our initial patch size should be
        patch_size = self.configuration_manager.patch_size

        # needed for deep supervision: how much do we need to downscale the segmentation targets for the different
        # outputs?
        deep_supervision_scales = self._get_deep_supervision_scales()

        (
            rotation_for_DA,
            do_dummy_2d_data_aug,
            initial_patch_size,
            mirror_axes,
        ) = self.configure_rotation_dummyDA_mirroring_and_inital_patch_size()

        # training pipeline
        tr_transforms = self.get_training_transforms(
            patch_size, rotation_for_DA, deep_supervision_scales, mirror_axes, do_dummy_2d_data_aug,
            use_mask_for_norm=self.configuration_manager.use_mask_for_norm,
            is_cascaded=self.is_cascaded, foreground_labels=self.label_manager.foreground_labels,
            regions=self.label_manager.foreground_regions if self.label_manager.has_regions else None,
            ignore_label=self.label_manager.ignore_label)

        # validation pipeline
        val_transforms = self.get_validation_transforms(deep_supervision_scales,
                                                        is_cascaded=self.is_cascaded,
                                                        foreground_labels=self.label_manager.foreground_labels,
                                                        regions=self.label_manager.foreground_regions if
                                                        self.label_manager.has_regions else None,
                                                        ignore_label=self.label_manager.ignore_label)

        dataset_tr, dataset_val = self.get_tr_and_val_datasets()

        dl_tr = nnUNetDataLoader(dataset_tr, self.batch_size,
                                 initial_patch_size,
                                 self.configuration_manager.patch_size,
                                 self.label_manager,
                                 oversample_foreground_percent=self.oversample_foreground_percent,
                                 sampling_probabilities=None, pad_sides=None, transforms=tr_transforms,
                                 probabilistic_oversampling=self.probabilistic_oversampling)
        dl_val = nnUNetDataLoader(dataset_val, self.batch_size,
                                  self.configuration_manager.patch_size,
                                  self.configuration_manager.patch_size,
                                  self.label_manager,
                                  oversample_foreground_percent=self.oversample_foreground_percent,
                                  sampling_probabilities=None, pad_sides=None, transforms=val_transforms,
                                  probabilistic_oversampling=self.probabilistic_oversampling)

        # 强制使用单线程数据加载
        mt_gen_train = SingleThreadedAugmenter(dl_tr, None)
        mt_gen_val = SingleThreadedAugmenter(dl_val, None)
        
        # # let's get this party started
        _ = next(mt_gen_train)
        _ = next(mt_gen_val)
        return mt_gen_train, mt_gen_val

    @staticmethod
    def get_training_transforms(
            patch_size: Union[np.ndarray, Tuple[int]],
            rotation_for_DA: RandomScalar,
            deep_supervision_scales: Union[List, Tuple, None],
            mirror_axes: Tuple[int, ...],
            do_dummy_2d_data_aug: bool,
            use_mask_for_norm: List[bool] = None,
            is_cascaded: bool = False,
            foreground_labels: Union[Tuple[int, ...], List[int]] = None,
            regions: List[Union[List[int], Tuple[int, ...], int]] = None,
            ignore_label: int = None,
    ) -> BasicTransform:
        transforms = []
        if do_dummy_2d_data_aug:
            ignore_axes = (0,)
            transforms.append(Convert3DTo2DTransform())
            patch_size_spatial = patch_size[1:]
        else:
            patch_size_spatial = patch_size
            ignore_axes = None
        transforms.append(
            SpatialTransform(
                patch_size_spatial, patch_center_dist_from_border=0, random_crop=False, p_elastic_deform=0,
                p_rotation=0.2,
                rotation=rotation_for_DA, p_scaling=0.2, scaling=(0.7, 1.4), p_synchronize_scaling_across_axes=1,
                bg_style_seg_sampling=False  # , mode_seg='nearest'
            )
        )

        if do_dummy_2d_data_aug:
            transforms.append(Convert2DTo3DTransform())

        transforms.append(RandomTransform(
            GaussianNoiseTransform(
                noise_variance=(0, 0.1),
                p_per_channel=1,
                synchronize_channels=True
            ), apply_probability=0.1
        ))
        transforms.append(RandomTransform(
            GaussianBlurTransform(
                blur_sigma=(0.5, 1.),
                synchronize_channels=False,
                synchronize_axes=False,
                p_per_channel=0.5, benchmark=True
            ), apply_probability=0.2
        ))
        transforms.append(RandomTransform(
            MultiplicativeBrightnessTransform(
                multiplier_range=BGContrast((0.75, 1.25)),
                synchronize_channels=False,
                p_per_channel=1
            ), apply_probability=0.15
        ))
        transforms.append(RandomTransform(
            ContrastTransform(
                contrast_range=BGContrast((0.75, 1.25)),
                preserve_range=True,
                synchronize_channels=False,
                p_per_channel=1
            ), apply_probability=0.15
        ))
        transforms.append(RandomTransform(
            SimulateLowResolutionTransform(
                scale=(0.5, 1),
                synchronize_channels=False,
                synchronize_axes=True,
                ignore_axes=ignore_axes,
                allowed_channels=None,
                p_per_channel=0.5
            ), apply_probability=0.25
        ))
        transforms.append(RandomTransform(
            GammaTransform(
                gamma=BGContrast((0.7, 1.5)),
                p_invert_image=1,
                synchronize_channels=False,
                p_per_channel=1,
                p_retain_stats=1
            ), apply_probability=0.1
        ))
        transforms.append(RandomTransform(
            GammaTransform(
                gamma=BGContrast((0.7, 1.5)),
                p_invert_image=0,
                synchronize_channels=False,
                p_per_channel=1,
                p_retain_stats=1
            ), apply_probability=0.3
        ))
        if mirror_axes is not None and len(mirror_axes) > 0:
            transforms.append(
                MirrorTransform(
                    allowed_axes=mirror_axes
                )
            )

        if use_mask_for_norm is not None and any(use_mask_for_norm):
            transforms.append(MaskImageTransform(
                apply_to_channels=[i for i in range(len(use_mask_for_norm)) if use_mask_for_norm[i]],
                channel_idx_in_seg=0,
                set_outside_to=0,
            ))

        transforms.append(
            RemoveLabelTansform(-1, 0)
        )
        if is_cascaded:
            assert foreground_labels is not None, 'We need foreground_labels for cascade augmentations'
            transforms.append(
                MoveSegAsOneHotToDataTransform(
                    source_channel_idx=1,
                    all_labels=foreground_labels,
                    remove_channel_from_source=True
                )
            )
            transforms.append(
                RandomTransform(
                    ApplyRandomBinaryOperatorTransform(
                        channel_idx=list(range(-len(foreground_labels), 0)),
                        strel_size=(1, 8),
                        p_per_label=1
                    ), apply_probability=0.4
                )
            )
            transforms.append(
                RandomTransform(
                    RemoveRandomConnectedComponentFromOneHotEncodingTransform(
                        channel_idx=list(range(-len(foreground_labels), 0)),
                        fill_with_other_class_p=0,
                        dont_do_if_covers_more_than_x_percent=0.15,
                        p_per_label=1
                    ), apply_probability=0.2
                )
            )

        if regions is not None:
            # the ignore label must also be converted
            transforms.append(
                ConvertSegmentationToRegionsTransform(
                    regions=list(regions) + [ignore_label] if ignore_label is not None else regions,
                    channel_in_seg=0
                )
            )

        if deep_supervision_scales is not None:
            transforms.append(DownsampleSegForDSTransform(ds_scales=deep_supervision_scales))

        return ComposeTransforms(transforms)

    @staticmethod
    def get_validation_transforms(
            deep_supervision_scales: Union[List, Tuple, None],
            is_cascaded: bool = False,
            foreground_labels: Union[Tuple[int, ...], List[int]] = None,
            regions: List[Union[List[int], Tuple[int, ...], int]] = None,
            ignore_label: int = None,
    ) -> BasicTransform:
        transforms = []
        transforms.append(
            RemoveLabelTansform(-1, 0)
        )

        if is_cascaded:
            transforms.append(
                MoveSegAsOneHotToDataTransform(
                    source_channel_idx=1,
                    all_labels=foreground_labels,
                    remove_channel_from_source=True
                )
            )

        if regions is not None:
            # the ignore label must also be converted
            transforms.append(
                ConvertSegmentationToRegionsTransform(
                    regions=list(regions) + [ignore_label] if ignore_label is not None else regions,
                    channel_in_seg=0
                )
            )

        if deep_supervision_scales is not None:
            transforms.append(DownsampleSegForDSTransform(ds_scales=deep_supervision_scales))
        return ComposeTransforms(transforms)

    def set_deep_supervision_enabled(self, enabled: bool):
        """
        This function is specific for the default architecture in nnU-Net. If you change the architecture, there are
        chances you need to change this as well!
        """
        if self.is_ddp:
            mod = self.network.module
        else:
            mod = self.network
        if isinstance(mod, OptimizedModule):
            mod = mod._orig_mod

        mod.decoder.deep_supervision = enabled

    def on_train_start(self):
        if not self.was_initialized:
            self.initialize()

        # dataloaders must be instantiated here (instead of __init__) because they need access to the training data
        # which may not be present  when doing inference
        self.dataloader_train, self.dataloader_val = self.get_dataloaders()

        maybe_mkdir_p(self.output_folder)

        # make sure deep supervision is on in the network
        self.set_deep_supervision_enabled(self.enable_deep_supervision)

        self.print_plans()
        empty_cache(self.device)

        # maybe unpack
        if self.local_rank == 0:
            self.dataset_class.unpack_dataset(
                self.preprocessed_dataset_folder,
                overwrite_existing=False,
                num_processes=max(1, round(get_allowed_n_proc_DA() // 2)),
                verify=True)

        if self.is_ddp:
            dist.barrier()

        # copy plans and dataset.json so that they can be used for restoring everything we need for inference
        save_json(self.plans_manager.plans, join(self.output_folder_base, 'plans.json'), sort_keys=False)
        save_json(self.dataset_json, join(self.output_folder_base, 'dataset.json'), sort_keys=False)

        # we don't really need the fingerprint but its still handy to have it with the others
        shutil.copy(join(self.preprocessed_dataset_folder_base, 'dataset_fingerprint.json'),
                    join(self.output_folder_base, 'dataset_fingerprint.json'))

        # produces a pdf in output folder
        self.plot_network_architecture()

        self._save_debug_information()

        # print(f"batch size: {self.batch_size}")
        # print(f"oversample: {self.oversample_foreground_percent}")

    def on_train_end(self):
        # dirty hack because on_epoch_end increments the epoch counter and this is executed afterwards.
        # This will lead to the wrong current epoch to be stored
        self.current_epoch -= 1
        self.save_checkpoint(join(self.output_folder, "checkpoint_final.pth"))
        self.current_epoch += 1

        # now we can delete latest
        if self.local_rank == 0 and isfile(join(self.output_folder, "checkpoint_latest.pth")):
            os.remove(join(self.output_folder, "checkpoint_latest.pth"))

        # shut down dataloaders
        old_stdout = sys.stdout
        with open(os.devnull, 'w') as f:
            sys.stdout = f
            if self.dataloader_train is not None and \
                    isinstance(self.dataloader_train, (NonDetMultiThreadedAugmenter, MultiThreadedAugmenter)):
                self.dataloader_train._finish()
            if self.dataloader_val is not None and \
                    isinstance(self.dataloader_train, (NonDetMultiThreadedAugmenter, MultiThreadedAugmenter)):
                self.dataloader_val._finish()
            sys.stdout = old_stdout

        empty_cache(self.device)
        self.print_to_log_file("Training done.")

    def on_train_epoch_start(self):
        self.network.train()
        self.lr_scheduler.step(self.current_epoch)
        self.print_to_log_file('')
        self.print_to_log_file(f'Epoch {self.current_epoch}')
        self.print_to_log_file(
            f"Current learning rate: {np.round(self.optimizer.param_groups[0]['lr'], decimals=5)}")
        # lrs are the same for all workers so we don't need to gather them in case of DDP training
        self.logger.log('lrs', self.optimizer.param_groups[0]['lr'], self.current_epoch)

    def train_step(self, batch: dict) -> dict:
        data = batch['data']
        target = batch['target']

        data = data.to(self.device, non_blocking=True)
        if isinstance(target, list):
            target = [i.to(self.device, non_blocking=True) for i in target]
        else:
            target = target.to(self.device, non_blocking=True)

        self.optimizer.zero_grad(set_to_none=True)
        # 禁用 AMP
        output = self.network(data)
        l = self.loss(output, target)

        # 直接使用 FP32 训练
        l.backward()
        torch.nn.utils.clip_grad_norm_(self.network.parameters(), 12)
        self.optimizer.step()
        return {'loss': l.detach().cpu().numpy()}

    def on_train_epoch_end(self, train_outputs: List[dict]):
        outputs = collate_outputs(train_outputs)

        if self.is_ddp:
            losses_tr = [None for _ in range(dist.get_world_size())]
            dist.all_gather_object(losses_tr, outputs['loss'])
            loss_here = np.vstack(losses_tr).mean()
        else:
            loss_here = np.mean(outputs['loss'])

        self.logger.log('train_losses', loss_here, self.current_epoch)

    def on_validation_epoch_start(self):
        self.network.eval()

    def validation_step(self, batch: dict) -> dict:
        data = batch['data']
        target = batch['target']

        data = data.to(self.device, non_blocking=True)
        if isinstance(target, list):
            target = [i.to(self.device, non_blocking=True) for i in target]
        else:
            target = target.to(self.device, non_blocking=True)

        # 禁用 AMP
        output = self.network(data)
        del data
        l = self.loss(output, target)

        # we only need the output with the highest output resolution (if DS enabled)
        if self.enable_deep_supervision:
            output = output[0]
            target = target[0]

        # the following is needed for online evaluation. Fake dice (green line)
        axes = [0] + list(range(2, output.ndim))

        if self.label_manager.has_regions:
            predicted_segmentation_onehot = (torch.sigmoid(output) > 0.5).long()
        else:
            # no need for softmax
            output_seg = output.argmax(1)[:, None]
            predicted_segmentation_onehot = torch.zeros(output.shape, device=output.device, dtype=torch.float32)
            predicted_segmentation_onehot.scatter_(1, output_seg, 1)
            del output_seg

        if self.label_manager.has_ignore_label:
            if not self.label_manager.has_regions:
                mask = (target != self.label_manager.ignore_label).float()
                # CAREFUL that you don't rely on target after this line!
                target[target == self.label_manager.ignore_label] = 0
            else:
                if target.dtype == torch.bool:
                    mask = ~target[:, -1:]
                else:
                    mask = 1 - target[:, -1:]
                # CAREFUL that you don't rely on target after this line!
                target = target[:, :-1]
        else:
            mask = None

        tp, fp, fn, _ = get_tp_fp_fn_tn(predicted_segmentation_onehot, target, axes=axes, mask=mask)

        tp_hard = tp.detach().cpu().numpy()
        fp_hard = fp.detach().cpu().numpy()
        fn_hard = fn.detach().cpu().numpy()
        if not self.label_manager.has_regions:
            # if we train with regions all segmentation heads predict some kind of foreground. In conventional
            # (softmax training) there needs tobe one output for the background. We are not interested in the
            # background Dice
            # [1:] in order to remove background
            tp_hard = tp_hard[1:]
            fp_hard = fp_hard[1:]
            fn_hard = fn_hard[1:]

        return {'loss': l.detach().cpu().numpy(), 'tp_hard': tp_hard, 'fp_hard': fp_hard, 'fn_hard': fn_hard}

    def on_validation_epoch_end(self, val_outputs: List[dict]):
        outputs_collated = collate_outputs(val_outputs)
        tp = np.sum(outputs_collated['tp_hard'], 0)
        fp = np.sum(outputs_collated['fp_hard'], 0)
        fn = np.sum(outputs_collated['fn_hard'], 0)

        if self.is_ddp:
            world_size = dist.get_world_size()

            tps = [None for _ in range(world_size)]
            dist.all_gather_object(tps, tp)
            tp = np.vstack([i[None] for i in tps]).sum(0)

            fps = [None for _ in range(world_size)]
            dist.all_gather_object(fps, fp)
            fp = np.vstack([i[None] for i in fps]).sum(0)

            fns = [None for _ in range(world_size)]
            dist.all_gather_object(fns, fn)
            fn = np.vstack([i[None] for i in fns]).sum(0)

            losses_val = [None for _ in range(world_size)]
            dist.all_gather_object(losses_val, outputs_collated['loss'])
            loss_here = np.vstack(losses_val).mean()
        else:
            loss_here = np.mean(outputs_collated['loss'])

        global_dc_per_class = [i for i in [2 * i / (2 * i + j + k) for i, j, k in zip(tp, fp, fn)]]
        mean_fg_dice = np.nanmean(global_dc_per_class)
        self.logger.log('mean_fg_dice', mean_fg_dice, self.current_epoch)
        self.logger.log('dice_per_class_or_region', global_dc_per_class, self.current_epoch)
        self.logger.log('val_losses', loss_here, self.current_epoch)

    def on_epoch_start(self):
        self.logger.log('epoch_start_timestamps', time(), self.current_epoch)

    def on_epoch_end(self):
        self.logger.log('epoch_end_timestamps', time(), self.current_epoch)

        self.print_to_log_file('train_loss', np.round(self.logger.my_fantastic_logging['train_losses'][-1], decimals=4))
        self.print_to_log_file('val_loss', np.round(self.logger.my_fantastic_logging['val_losses'][-1], decimals=4))
        self.print_to_log_file('Pseudo dice', [np.round(i, decimals=4) for i in
                                               self.logger.my_fantastic_logging['dice_per_class_or_region'][-1]])
        self.print_to_log_file(
            f"Epoch time: {np.round(self.logger.my_fantastic_logging['epoch_end_timestamps'][-1] - self.logger.my_fantastic_logging['epoch_start_timestamps'][-1], decimals=2)} s")

        # handling periodic checkpointing
        current_epoch = self.current_epoch
        if (current_epoch + 1) % self.save_every == 0 and current_epoch != (self.num_epochs - 1):
            self.save_checkpoint(join(self.output_folder, 'checkpoint_latest.pth'))

        # handle 'best' checkpointing. ema_fg_dice is computed by the logger and can be accessed like this
        if self._best_ema is None or self.logger.my_fantastic_logging['ema_fg_dice'][-1] > self._best_ema:
            self._best_ema = self.logger.my_fantastic_logging['ema_fg_dice'][-1]
            self.print_to_log_file(f"Yayy! New best EMA pseudo Dice: {np.round(self._best_ema, decimals=4)}")
            self.save_checkpoint(join(self.output_folder, 'checkpoint_best.pth'))

        if self.local_rank == 0:
            self.logger.plot_progress_png(self.output_folder)

        self.current_epoch += 1

    def save_checkpoint(self, filename: str) -> None:
        if self.local_rank == 0:
            if not self.disable_checkpointing:
                if self.is_ddp:
                    mod = self.network.module
                else:
                    mod = self.network
                if isinstance(mod, OptimizedModule):
                    mod = mod._orig_mod

                checkpoint = {
                    'network_weights': mod.state_dict(),
                    'optimizer_state': self.optimizer.state_dict(),
                    'grad_scaler_state': self.grad_scaler.state_dict() if self.grad_scaler is not None else None,
                    'logging': self.logger.get_checkpoint(),
                    '_best_ema': self._best_ema,
                    'current_epoch': self.current_epoch + 1,
                    'init_args': self.my_init_kwargs,
                    'trainer_name': self.__class__.__name__,
                    'inference_allowed_mirroring_axes': self.inference_allowed_mirroring_axes,
                }
                torch.save(checkpoint, filename)
            else:
                self.print_to_log_file('No checkpoint written, checkpointing is disabled')

    def load_checkpoint(self, filename_or_checkpoint: Union[dict, str]) -> None:
        if not self.was_initialized:
            self.initialize()

        if isinstance(filename_or_checkpoint, str):
            checkpoint = torch.load(filename_or_checkpoint, map_location=self.device, weights_only=False)
        # if state dict comes from nn.DataParallel but we use non-parallel model here then the state dict keys do not
        # match. Use heuristic to make it match
        new_state_dict = {}
        for k, value in checkpoint['network_weights'].items():
            key = k
            if key not in self.network.state_dict().keys() and key.startswith('module.'):
                key = key[7:]
            new_state_dict[key] = value

        self.my_init_kwargs = checkpoint['init_args']
        self.current_epoch = checkpoint['current_epoch']
        self.logger.load_checkpoint(checkpoint['logging'])
        self._best_ema = checkpoint['_best_ema']
        self.inference_allowed_mirroring_axes = checkpoint[
            'inference_allowed_mirroring_axes'] if 'inference_allowed_mirroring_axes' in checkpoint.keys() else self.inference_allowed_mirroring_axes

        # messing with state dict naming schemes. Facepalm.
        if self.is_ddp:
            if isinstance(self.network.module, OptimizedModule):
                self.network.module._orig_mod.load_state_dict(new_state_dict)
            else:
                self.network.module.load_state_dict(new_state_dict)
        else:
            if isinstance(self.network, OptimizedModule):
                self.network._orig_mod.load_state_dict(new_state_dict)
            else:
                self.network.load_state_dict(new_state_dict)
        self.optimizer.load_state_dict(checkpoint['optimizer_state'])
        if self.grad_scaler is not None:
            if checkpoint['grad_scaler_state'] is not None:
                self.grad_scaler.load_state_dict(checkpoint['grad_scaler_state'])

    def perform_actual_validation(self, save_probabilities: bool = False):
        self.set_deep_supervision_enabled(False)
        self.network.eval()

        if self.is_ddp and self.batch_size == 1 and self.enable_deep_supervision and self._do_i_compile():
            self.print_to_log_file("WARNING! batch size is 1 during training and torch.compile is enabled. If you "
                                   "encounter crashes in validation then this is because torch.compile forgets "
                                   "to trigger a recompilation of the model with deep supervision disabled. "
                                   "This causes torch.flip to complain about getting a tuple as input. Just rerun the "
                                   "validation with --val (exactly the same as before) and then it will work. "
                                   "Why? Because --val triggers nnU-Net to ONLY run validation meaning that the first "
                                   "forward pass (where compile is triggered) already has deep supervision disabled. "
                                   "This is exactly what we need in perform_actual_validation")

        predictor = nnUNetPredictor(tile_step_size=0.5, use_gaussian=True, use_mirroring=True,
                                    perform_everything_on_device=True, device=self.device, verbose=False,
                                    verbose_preprocessing=False, allow_tqdm=False)
        predictor.manual_initialization(self.network, self.plans_manager, self.configuration_manager, None,
                                        self.dataset_json, self.__class__.__name__,
                                        self.inference_allowed_mirroring_axes)

        with multiprocessing.get_context("spawn").Pool(default_num_processes) as segmentation_export_pool:
            worker_list = [i for i in segmentation_export_pool._pool]
            validation_output_folder = join(self.output_folder, 'validation')
            maybe_mkdir_p(validation_output_folder)

            # we cannot use self.get_tr_and_val_datasets() here because we might be DDP and then we have to distribute
            # the validation keys across the workers.
            _, val_keys = self.do_split()
            if self.is_ddp:
                last_barrier_at_idx = len(val_keys) // dist.get_world_size() - 1

                val_keys = val_keys[self.local_rank:: dist.get_world_size()]
                # we cannot just have barriers all over the place because the number of keys each GPU receives can be
                # different

            dataset_val = self.dataset_class(self.preprocessed_dataset_folder, val_keys,
                                             folder_with_segs_from_previous_stage=self.folder_with_segs_from_previous_stage)

            next_stages = self.configuration_manager.next_stage_names

            if next_stages is not None:
                _ = [maybe_mkdir_p(join(self.output_folder_base, 'predicted_next_stage', n)) for n in next_stages]

            results = []

            for i, k in enumerate(dataset_val.identifiers):
                proceed = not check_workers_alive_and_busy(segmentation_export_pool, worker_list, results,
                                                           allowed_num_queued=2)
                while not proceed:
                    sleep(0.1)
                    proceed = not check_workers_alive_and_busy(segmentation_export_pool, worker_list, results,
                                                               allowed_num_queued=2)

                self.print_to_log_file(f"predicting {k}")
                data, _, seg_prev, properties = dataset_val.load_case(k)

                # we do [:] to convert blosc2 to numpy
                data = data[:]

                if self.is_cascaded:
                    seg_prev = seg_prev[:]
                    data = np.vstack((data, convert_labelmap_to_one_hot(seg_prev, self.label_manager.foreground_labels,
                                                                        output_dtype=data.dtype)))
                with warnings.catch_warnings():
                    # ignore 'The given NumPy array is not writable' warning
                    warnings.simplefilter("ignore")
                    data = torch.from_numpy(data)

                self.print_to_log_file(f'{k}, shape {data.shape}, rank {self.local_rank}')
                output_filename_truncated = join(validation_output_folder, k)

                prediction = predictor.predict_sliding_window_return_logits(data)
                prediction = prediction.cpu()

                # this needs to go into background processes
                results.append(
                    segmentation_export_pool.starmap_async(
                        export_prediction_from_logits, (
                            (prediction, properties, self.configuration_manager, self.plans_manager,
                             self.dataset_json, output_filename_truncated, save_probabilities),
                        )
                    )
                )
                # for debug purposes
                # export_prediction_from_logits(prediction, properties, self.configuration_manager, self.plans_manager,
                #      self.dataset_json, output_filename_truncated, save_probabilities)

                # if needed, export the softmax prediction for the next stage
                if next_stages is not None:
                    for n in next_stages:
                        next_stage_config_manager = self.plans_manager.get_configuration(n)
                        expected_preprocessed_folder = join(nnUNet_preprocessed, self.plans_manager.dataset_name,
                                                            next_stage_config_manager.data_identifier)
                        # next stage may have a different dataset class, do not use self.dataset_class
                        dataset_class = infer_dataset_class(expected_preprocessed_folder)

                        try:
                            # we do this so that we can use load_case and do not have to hard code how loading training cases is implemented
                            tmp = dataset_class(expected_preprocessed_folder, [k])
                            d, _, _, _ = tmp.load_case(k)
                        except FileNotFoundError:
                            self.print_to_log_file(
                                f"Predicting next stage {n} failed for case {k} because the preprocessed file is missing! "
                                f"Run the preprocessing for this configuration first!")
                            continue

                        target_shape = d.shape[1:]
                        output_folder = join(self.output_folder_base, 'predicted_next_stage', n)
                        output_file_truncated = join(output_folder, k)

                        # resample_and_save(prediction, target_shape, output_file, self.plans_manager, self.configuration_manager, properties,
                        #                   self.dataset_json)
                        results.append(segmentation_export_pool.starmap_async(
                            resample_and_save, (
                                (prediction, target_shape, output_file_truncated, self.plans_manager,
                                 self.configuration_manager,
                                 properties,
                                 self.dataset_json,
                                 default_num_processes,
                                 dataset_class),
                            )
                        ))
                # if we don't barrier from time to time we will get nccl timeouts for large datasets. Yuck.
                if self.is_ddp and i < last_barrier_at_idx and (i + 1) % 20 == 0:
                    dist.barrier()

            _ = [r.get() for r in results]

        if self.is_ddp:
            dist.barrier()

        if self.local_rank == 0:
            metrics = compute_metrics_on_folder(join(self.preprocessed_dataset_folder_base, 'gt_segmentations'),
                                                validation_output_folder,
                                                join(validation_output_folder, 'summary.json'),
                                                self.plans_manager.image_reader_writer_class(),
                                                self.dataset_json["file_ending"],
                                                self.label_manager.foreground_regions if self.label_manager.has_regions else
                                                self.label_manager.foreground_labels,
                                                self.label_manager.ignore_label, chill=True,
                                                num_processes=default_num_processes * dist.get_world_size() if
                                                self.is_ddp else default_num_processes)
            self.print_to_log_file("Validation complete", also_print_to_console=True)
            self.print_to_log_file("Mean Validation Dice: ", (metrics['foreground_mean']["Dice"]),
                                   also_print_to_console=True)

        self.set_deep_supervision_enabled(True)
        compute_gaussian.cache_clear()

    def run_training(self):
        self.on_train_start()

        for epoch in range(self.current_epoch, self.num_epochs):
            self.on_epoch_start()

            self.on_train_epoch_start()
            train_outputs = []
            for batch_id in range(self.num_iterations_per_epoch):
                train_outputs.append(self.train_step(next(self.dataloader_train)))
            self.on_train_epoch_end(train_outputs)

            with torch.no_grad():
                self.on_validation_epoch_start()
                val_outputs = []
                for batch_id in range(self.num_val_iterations_per_epoch):
                    val_outputs.append(self.validation_step(next(self.dataloader_val)))
                self.on_validation_epoch_end(val_outputs)

            self.on_epoch_end()

        self.on_train_end()

您可能感兴趣的与本文相关的镜像

PyTorch 2.5

PyTorch 2.5

PyTorch
Cuda

PyTorch 是一个开源的 Python 机器学习库,基于 Torch 库,底层由 C++ 实现,应用于人工智能领域,如计算机视觉和自然语言处理

<think> 我们参考了用户提供的引用内容,特别是引用[2]中提到的nnunet报错解决方案。用户的问题是无法从'torch.amp'导入'GradScaler'。根据引用[2]和引用[3],正确的导入方式应该是从'torch.cuda.amp'中导入GradScaler。 此外,引用[1]和引用[4]也说明GradScaler属于torch.cuda.amp模块。因此,用户应该修改导入语句。 具体步骤: 1. 将原来的导入语句 `from torch.amp import GradScaler` 改为 `from torch.cuda.amp import GradScaler` 2. 如果仍然报错,检查PyTorch版本是否支持AMP(自动混合精度)。AMP需要PyTorch 1.6及以上版本。 3. 确保使用了支持CUDA的环境,因为`torch.cuda.amp`仅在CUDA设备上可用。 另外,引用[5]提到了GradScaler初始化时可以调整一些参数以应对数值问题,但这不是导入问题,而是使用时的优化。 因此,针对导入问题,我们只需修改导入路径即可。 注意:如果用户没有使用CUDA设备(即没有NVIDIA GPU),则无法使用`torch.cuda.amp`,这种情况下可能需要考虑其他方式(如使用CPU训练,但CPU上不支持混合精度训练,或者使用其他加速库)。 但是,根据用户的描述,他们是在尝试使用混合精度训练,所以必须要有CUDA环境。 综上所述,解决方案是修改导入语句。 此外,引用[3]给出了一个使用GradScaler的典型代码示例,用户可以参考。 如果用户遇到其他相关错误,例如多线程问题(如引用[2]中提到的Win系统多线程报错),则需要另外处理。但当前问题只是导入,所以先解决导入问题。 因此,回答如下: </think> 要解决无法从 `torch.amp` 导入 `GradScaler` 的问题,请按照以下步骤操作: ### 解决方案 1. **修正导入路径** `GradScaler` 属于 CUDA AMP 模块,正确导入方式为: ```python # 错误写法 ❌ # from torch.amp import GradScaler # 正确写法 ✅ from torch.cuda.amp import GradScaler ``` 2. **检查 PyTorch 版本** 确保 PyTorch ≥ 1.6 版本(AMP 功能最低要求): ```python import torch print(torch.__version__) # 需 ≥ 1.6.0 ``` 升级命令: ```bash pip install --upgrade torch torchvision ``` 3. **验证 CUDA 可用性** AMP 仅在 CUDA 环境下生效: ```python assert torch.cuda.is_available(), "AMP requires CUDA-enabled GPU" scaler = GradScaler() # 必须在 CUDA 环境下初始化 ``` 4. **完整使用示例** ```python from torch.cuda.amp import autocast, GradScaler model = MyModel().cuda() optimizer = torch.optim.SGD(model.parameters(), lr=0.01) scaler = GradScaler() # 实例化缩放器 for data, target in dataloader: optimizer.zero_grad() with autocast(): # 自动混合精度上下文 output = model(data) loss = loss_fn(output, target) scaler.scale(loss).backward() # 缩放梯度 scaler.step(optimizer) # 更新参数 scaler.update() # 调整缩放因子 ``` ### 常见错误原因 1. **路径错误** `torch.amp` 是通用模块,实际 `GradScaler` 实现位于 `torch.cuda.amp` 中[^2][^3]。 2. **PyTorch 版本过低** AMP 功能在 PyTorch 1.6+ 才完整支持,旧版本需升级[^4]。 3. **非 CUDA 环境** 在 CPU 或非 NVIDIA GPU 设备上无法使用 AMP 功能[^1]。 ### 注意事项 - 若使用 Windows 系统,需安装最新 CUDA 驱动并配置环境变量 - 多线程训练时可能出现冲突,建议设置 `num_workers=0` 调试[^2] 通过上述修正,即可解决导入错误并正常使用混合精度训练。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值