自然常数e的由来以及计算机为什么是二进制

本文介绍了数学常数e的来源,从瑞士数学家雅各布·伯努利的复利问题出发,探讨了e如何从无穷小的极限过程中得出。同时,文章提到了欧拉对e的推广及其在指数函数中的定义。此外,还简单讨论了为何计算机选择二进制而非理论上更高效的e进制,原因在于实际实现的复杂性和效率。

背景

​ 昨晚我在看一本书,叫《数学极客》,看到第六章《e:不自然的自然数》,这个数最早开始接触应该是高一的时候,那时候问老师,这个数是怎么来的,老师说,和圆周率一样,是一个常数,然后就没有然后了,后面这个问题就随着我的好奇心一起沉睡了,直到昨晚这个尘封许久的问题又一次浮上我的心头,庆幸的是这次我有了打破砂锅问到底的想法和行动。特意写下这篇文章纪念这一次探索之旅。

e是怎么来的?

​ 这个数其实来源于1683年瑞士数学家雅各布·伯努利以及他所研究的复利问题。复利问题是这样的,如果你有a元,存进银行里,银行一年之后付你100%的利息,那么你一年之后能拿到的钱就是:
y=a(1+1) y = a(1 + 1) y=a(1+1)
但是现在要是银行改变策略了,变成半年付一次利息,并且一次利息为50%,那么一年后你能拿到多少呢?是下面这个数:
y=a(1+12)2 y = a(1 +\frac{1}{2})^2 y=a(1+21)2
其实很明显我们可以看出来,分的份数越多可以拿到的更多,因为下一次结算利息是以上一次发放的本金加上利息作为本金计算出来的。那么自然而然,我们会好奇,要是把一年的时间分成无穷大份,我们一年之后能得到多少?这个计算也简单嘛。就是下面这个式子:
y=alim⁡n→+∞(1+1n)n y = a\lim_{n\rightarrow+\infty}(1 + \frac{1}{n})^n y=an+lim(1+n1

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值