1030. Travel Plan (30)
A traveler's map gives the distances between cities along the highways, together with the cost of each highway. Now you are supposed to write a program to help a traveler to decide the shortest path between his/her starting city and the destination. If such a shortest path is not unique, you are supposed to output the one with the minimum cost, which is guaranteed to be unique.
Input Specification:
Each input file contains one test case. Each case starts with a line containing 4 positive integers N, M, S, and D, where N (<=500) is the number of cities (and hence the cities are numbered from 0 to N-1); M is the number of highways; S and D are the starting and the destination cities, respectively. Then M lines follow, each provides the information of a highway, in the format:
City1 City2 Distance Cost
where the numbers are all integers no more than 500, and are separated by a space.
Output Specification:
For each test case, print in one line the cities along the shortest path from the starting point to the destination, followed by the total distance and the total cost of the path. The numbers must be separated by a space and there must be no extra space at the end of output.
Sample Input4 5 0 3 0 1 1 20 1 3 2 30 0 3 4 10 0 2 2 20 2 3 1 20Sample Output
0 2 3 3 40
提交代码
题意:给定n个点,m条边,给定每条边的距离,花费, 求源点到目的地距离最短的路径, 如果存在多条, 输出花费最小的那条。
题解:Dijkstra算法的变形。
#include <cstdio>
#include <cstring>
const int N = 510;
const int INF = 0x3f3f3f3f;
int maze[N][N], cost[N][N], pre[N];
int dist[N], ct[N];
int n;
void Dijkstra(int src, int dest) {
bool vis[N];
memset(vis, false, sizeof(vis));
vis[src] = true;
for (int i = 0; i < n; ++i) {
dist[i] = maze[src][i];
ct[i] = cost[src][i];
pre[i] = src;
}
dist[src] = ct[src] = 0;
for (int i = 0; i < n; ++i) {
int tmp_dist = INF;
int tmp_cost = INF;
int k;
for (int j = 0; j < n; ++j) {
if (vis[j] == false) {
if (dist[j] < tmp_dist) {
tmp_dist = dist[j];
tmp_cost = ct[j];
k = j;
}
else if (dist[j] == tmp_dist && ct[j] < tmp_cost) {
tmp_cost = ct[j];
k = j;
}
}
}
vis[k] = true;
for (int j = 0; j < n; ++j) {
if (vis[j] == false) {
if (dist[j] > dist[k] + maze[k][j]) {
dist[j] = dist[k] + maze[k][j];
ct[j] = ct[k] + cost[k][j];
pre[j] = k;
}
else if (dist[j] == dist[k] + maze[k][j] && ct[j] > ct[k] + cost[k][j])
ct[j] = ct[k] + cost[k][j], pre[j] = k;
}
}
}
}
void find_path(int src, int cur) {
if (src == cur) {
printf("%d ", src);
return ;
}
find_path(src, pre[cur]);
printf("%d ", cur);
}
int main() {
int m, src, dest;
scanf("%d%d%d%d", &n, &m, &src, &dest);
memset(maze, INF, sizeof(maze));
memset(cost, INF, sizeof(cost));
for (int i = 0; i < m; ++i) {
int u, v, d, c;
scanf("%d%d%d%d", &u, &v, &d, &c);
if (maze[u][v] > d) {
maze[u][v] = maze[v][u] = d;
cost[u][v] = cost[v][u] = c;
}
else if (maze[u][v] == d && cost[u][v] > c)
cost[u][v] = cost[v][u] = c;
}
memset(pre, -1, sizeof(pre));
Dijkstra(src, dest);
find_path(src, dest);
printf("%d %d\n", dist[dest], ct[dest]);
return 0;
}