08 排序-冒泡

排序算法太多了,有很多可能你连名字都没听说过,比如猴子排序、睡眠排序、面条排序等。我只讲众多排序算法中的一小撮,也是最经典的、最常用的:冒泡排序、插入排序、选择排序、归并排序、快速排序、计数排序、基数排序、桶排序。我按照时间复杂度把它们分成了三类,分三节课来讲解。

一、如何分析一个 排序算法

执行效率

1.从最好、最坏、平均时间复杂度分析

对于要排序的数据,有的可能接近有序、有的可能完全无序。有序程度不同,对排序算法肯定有影响,我们需要知道算法在不通数据下的表现。

2.时间复杂度的系数、常数、低阶

我们表示时间复杂度一般会忽略系数、常数、低阶。但实际开发过程中,我们排序的数据可能比较少,所以要对这些进行比较。

3.比较次数和交换次数

基于比较的排序算法,会涉及2中操作:大小的比较,和元素的交换(移动)。所以应该把这两种也考虑进去。

内存消耗

也就是空间复杂度。 O(1)空间复杂度的排序算法我们叫原地排序。

排序算法的稳定性

如果元素中有2个多个相同的数,排序后他们的前后相对位置不变,那么这个算法就是稳定的。否则是不稳定的

二、冒泡排序

冒泡排序只会操作相邻的两个数据。每次冒泡操作都会对相邻的两个元素进行比较,看是否满足大小关系要求。如果不满足就让它俩互换。一次冒泡会让至少一个元素移动到它应该在的位置,重复 n 次,就完成了 n 个数据的排序工作。

// 冒泡排序,a表示数组,n表示数组大小
public void bubbleSort(int[] a, int n) {
  if (n <= 1) return;
 
 for (int i = 0; i < n-1; ++i) {
    // 提前退出冒泡循环的标志位
    boolean flag = false;
    for (int j = 0; j < n - i - 1; ++j) {
      if (a[j] > a[j+1]) { // 交换
        int tmp = a[j];
        a[j] = a[j+1];
        a[j+1] = tmp;
        flag = true;  // 表示有数据交换      
      }
    }
    if (!flag) break;  // 没有数据交换,提前退出
  }
}

结论:

空间复杂度:O(1)  属于原地排序算法

是否稳定: 稳定排序算法

时间复杂度:最好O(n), 最坏O(n^2), 平均O(n^2)

如何分析平均时间复杂度:

对于包含 n 个数据的数组,这 n 个数据就有 n! 种排列方式。不同的排列方式,冒泡排序执行的时间肯定是不同的。比如我们前面举的那两个例子,其中一个要进行 6 次冒泡,而另一个只需要 4 次。如果用概率论方法定量分析平均时间复杂度,涉及的数学推理和计算就会很复杂。我这里还有一种思路,通过“有序度”和“逆序度”这两个概念来进行分析。

有序度是数组中具有有序关系的元素对的个数。有序元素对用数学表达式表示就是这样:

有序元素对:a[i] <= a[j], 如果i < j。

 同理,对于一个倒序排列的数组,比如 6,5,4,3,2,1,有序度是 0;对于一个完全有序的数组,比如 1,2,3,4,5,6,有序度就是 n*(n-1)/2,也就是 15。我们把这种完全有序的数组的有序度叫作满有序度。

逆序度的定义正好跟有序度相反(默认从小到大为有序);

关于这三个概念,我们还可以得到一个公式:逆序度 = 满有序度 - 有序度。我们排序的过程就是一种增加有序度,减少逆序度的过程,最后达到满有序度,就说明排序完成了。

我还是拿前面举的那个冒泡排序的例子来说明。要排序的数组的初始状态是 4,5,6,3,2,1 ,其中,有序元素对有 (4,5) (4,6)(5,6),所以有序度是 3。n=6,所以排序完成之后终态的满有序度为 n*(n-1)/2=15。

冒泡排序包含两个操作原子,比较和交换。每交换一次,有序度就加 1。不管算法怎么改进,交换次数总是确定的,即为逆序度,也就是n*(n-1)/2–初始有序度。此例中就是 15–3=12,要进行 12 次交换操作。

对于包含 n 个数据的数组进行冒泡排序,平均交换次数是多少呢?最坏情况下,初始状态的有序度是 0,所以要进行 n*(n-1)/2 次交换。最好情况下,初始状态的有序度是 n*(n-1)/2,就不需要进行交换。我们可以取个中间值 n*(n-1)/4,来表示初始有序度既不是很高也不是很低的平均情况。换句话说,平均情况下,需要 n*(n-1)/4 次交换操作,比较操作肯定要比交换操作多,而复杂度的上限是 O(n2),所以平均情况下的时间复杂度就是 O(n2)。

这个平均时间复杂度推导过程其实并不严格,但是很多时候很实用,毕竟概率论的定量分析太复杂,不太好用。等我们讲到快排的时候,我还会再次用这种“不严格”的方法来分析平均时间复杂度。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

七号公园的忧伤

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值