OpenJudge noi 1350Euclid's Game

本文介绍了一个基于两个自然数的游戏策略,两名玩家通过特定的数学操作竞争以达到胜利条件。文章详细解释了游戏规则,并提供了两种解决方案:一种是利用斐波那契数列的比例特性,另一种是采用辗转相除法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Description
Two players, Stan and Ollie, play, starting with two natural numbers. Stan, the first player, subtracts any positive multiple of the lesser of the two numbers from the greater of the two numbers, provided that the resulting number must be nonnegative. Then Ollie, the second player, does the same with the two resulting numbers, then Stan, etc., alternately, until one player is able to subtract a multiple of the lesser number from the greater to reach 0, and thereby wins. For example, the players may start with (25,7):
25 7
11 7
4 7
4 3
1 3
1 0

stan wins
Input
The input consists of a number of lines. Each line contains two positive integers giving the starting two numbers of the game. Stan always starts.
Output
For each line of input, output one line saying either Stan wins or Ollie wins assuming that both of them play perfectly. The last line of input contains two zeroes and should not be processed.
Sample Input
34 12 15 24 0 0
Sample Output
Stan wins
Ollie wins

这题目大致题意就是说,给你两个数,两个人依次对较大的那个数进行修改。修改的方法是把较大的数减去较小的数的任意正整数倍数,直到谁修改到0,谁就赢了。这个东西可以用fiber来证明。我们知道,对于fiber它的比例随着项数的增大而逐渐接近(√5-1)/2,而且相邻两项会依次小于,大于这个数。我们可以判断这个数是大于还是小于这个数,从而可以判断先手还是后手才赢。如果m==n,则先手会必胜,这个显然

因此,代码如下:

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cmath>
using namespace std;
const double p=(sqrt(5)-1)/2;
int main()
{
    double m,n;
    while(true)
    {
        cin>>m>>n;
        if(m==0&&n==0)
        break;
        if(m==n)
            printf("Stan wins\n");
        else
        {
            if(n>m) swap(n,m);
            double c=n/m;
            if(c>p)
            printf("Ollie wins\n");
            else
            printf("Stan wins\n");
        }       
    }
    return 0;
}

还有一种方法是辗转相除法。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值