最近涉及到了LSM的编写,在网上基本上搜不到关于LSM的编写规则和使用方法,LSM是我觉得菜鸟非常适合的一种访问控制策略编写,所以今天从SELinux的LSM代码学习。
其中每个函数都是可以回调的,也就是hook。下面我以
task_kill为例理解SELinux的实现机制
从上面的代码中我们可以看出,如果cache中miss,那么就会调用
security_compute_av,
在内核源码/security/SELinux中hook.c中定义了LSM模块的hook机制。hook主要根据的是struct security_operations结构体,里面提供了各种函数的回调机制。
- struct security_operations {
- int (*ptrace) (struct task_struct * parent, struct task_struct * child);
- int (*capget) (struct task_struct * target,
- kernel_cap_t * effective,
- kernel_cap_t * inheritable, kernel_cap_t * permitted);
- int (*capset_check) (struct task_struct * target,
- kernel_cap_t * effective,
- kernel_cap_t * inheritable,
- kernel_cap_t * permitted);
- void (*capset_set) (struct task_struct * target,
- kernel_cap_t * effective,
- kernel_cap_t * inheritable,
- kernel_cap_t * permitted);
- int (*capable) (struct task_struct * tsk, int cap);
- int (*acct) (struct file * file);
- int (*sysctl) (struct ctl_table * table, int op);
- int (*quotactl) (int cmds, int type, int id, struct super_block * sb);
- int (*quota_on) (struct dentry * dentry);
- int (*syslog) (int type);
- int (*settime) (struct timespec *ts, struct timezone *tz);
- int (*vm_enough_memory) (long pages);
- int (*bprm_alloc_security) (struct linux_binprm * bprm);
- void (*bprm_free_security) (struct linux_binprm * bprm);
- void (*bprm_apply_creds) (struct linux_binprm * bprm, int unsafe);
- void (*bprm_post_apply_creds) (struct linux_binprm * bprm);
- int (*bprm_set_security) (struct linux_binprm * bprm);
- int (*bprm_check_security) (struct linux_binprm * bprm);
- int (*bprm_secureexec) (struct linux_binprm * bprm);
- int (*sb_alloc_security) (struct super_block * sb);
- void (*sb_free_security) (struct super_block * sb);
- int (*sb_copy_data)(struct file_system_type *type,
- void *orig, void *copy);
- int (*sb_kern_mount) (struct super_block *sb, void *data);
- int (*sb_statfs) (struct dentry *dentry);
- int (*sb_mount) (char *dev_name, struct nameidata * nd,
- char *type, unsigned long flags, void *data);
- int (*sb_check_sb) (struct vfsmount * mnt, struct nameidata * nd);
- int (*sb_umount) (struct vfsmount * mnt, int flags);
- void (*sb_umount_close) (struct vfsmount * mnt);
- void (*sb_umount_busy) (struct vfsmount * mnt);
- void (*sb_post_remount) (struct vfsmount * mnt,
- unsigned long flags, void *data);
- void (*sb_post_mountroot) (void);
- void (*sb_post_addmount) (struct vfsmount * mnt,
- struct nameidata * mountpoint_nd);
- int (*sb_pivotroot) (struct nameidata * old_nd,
- struct nameidata * new_nd);
- void (*sb_post_pivotroot) (struct nameidata * old_nd,
- struct nameidata * new_nd);
- int (*inode_alloc_security) (struct inode *inode);
- void (*inode_free_security) (struct inode *inode);
- int (*inode_init_security) (struct inode *inode, struct inode *dir,
- char **name, void **value, size_t *len);
- int (*inode_create) (struct inode *dir,
- struct dentry *dentry, int mode);
- int (*inode_link) (struct dentry *old_dentry,
- struct inode *dir, struct dentry *new_dentry);
- int (*inode_unlink) (struct inode *dir, struct dentry *dentry);
- int (*inode_symlink) (struct inode *dir,
- struct dentry *dentry, const char *old_name);
- int (*inode_mkdir) (struct inode *dir, struct dentry *dentry, int mode);
- int (*inode_rmdir) (struct inode *dir, struct dentry *dentry);
- int (*inode_mknod) (struct inode *dir, struct dentry *dentry,
- int mode, dev_t dev);
- int (*inode_rename) (struct inode *old_dir, struct dentry *old_dentry,
- struct inode *new_dir, struct dentry *new_dentry);
- int (*inode_readlink) (struct dentry *dentry);
- int (*inode_follow_link) (struct dentry *dentry, struct nameidata *nd);
- int (*inode_permission) (struct inode *inode, int mask, struct nameidata *nd);
- int (*inode_setattr)(struct dentry *dentry, struct iattr *attr);
- int (*inode_getattr) (struct vfsmount *mnt, struct dentry *dentry);
- void (*inode_delete) (struct inode *inode);
- int (*inode_setxattr) (struct dentry *dentry, char *name, void *value,
- size_t size, int flags);
- void (*inode_post_setxattr) (struct dentry *dentry, char *name, void *value,
- size_t size, int flags);
- int (*inode_getxattr) (struct dentry *dentry, char *name);
- int (*inode_listxattr) (struct dentry *dentry);
- int (*inode_removexattr) (struct dentry *dentry, char *name);
- const char *(*inode_xattr_getsuffix) (void);
- int (*inode_getsecurity)(const struct inode *inode, const char *name, void *buffer, size_t size, int err);
- int (*inode_setsecurity)(struct inode *inode, const char *name, const void *value, size_t size, int flags);
- int (*inode_listsecurity)(struct inode *inode, char *buffer, size_t buffer_size);
- int (*file_permission) (struct file * file, int mask);
- int (*file_alloc_security) (struct file * file);
- void (*file_free_security) (struct file * file);
- int (*file_ioctl) (struct file * file, unsigned int cmd,
- unsigned long arg);
- int (*file_mmap) (struct file * file,
- unsigned long reqprot,
- unsigned long prot, unsigned long flags);
- int (*file_mprotect) (struct vm_area_struct * vma,
- unsigned long reqprot,
- unsigned long prot);
- int (*file_lock) (struct file * file, unsigned int cmd);
- int (*file_fcntl) (struct file * file, unsigned int cmd,
- unsigned long arg);
- int (*file_set_fowner) (struct file * file);
- int (*file_send_sigiotask) (struct task_struct * tsk,
- struct fown_struct * fown, int sig);
- int (*file_receive) (struct file * file);
- int (*task_create) (unsigned long clone_flags);
- int (*task_alloc_security) (struct task_struct * p);
- void (*task_free_security) (struct task_struct * p);
- int (*task_setuid) (uid_t id0, uid_t id1, uid_t id2, int flags);
- int (*task_post_setuid) (uid_t old_ruid /* or fsuid */ ,
- uid_t old_euid, uid_t old_suid, int flags);
- int (*task_setgid) (gid_t id0, gid_t id1, gid_t id2, int flags);
- int (*task_setpgid) (struct task_struct * p, pid_t pgid);
- int (*task_getpgid) (struct task_struct * p);
- int (*task_getsid) (struct task_struct * p);
- void (*task_getsecid) (struct task_struct * p, u32 * secid);
- int (*task_setgroups) (struct group_info *group_info);
- int (*task_setnice) (struct task_struct * p, int nice);
- int (*task_setioprio) (struct task_struct * p, int ioprio);
- int (*task_getioprio) (struct task_struct * p);
- int (*task_setrlimit) (unsigned int resource, struct rlimit * new_rlim);
- int (*task_setscheduler) (struct task_struct * p, int policy,
- struct sched_param * lp);
- int (*task_getscheduler) (struct task_struct * p);
- int (*task_movememory) (struct task_struct * p);
- int (*task_kill) (struct task_struct * p,
- struct siginfo * info, int sig, u32 secid);
- int (*task_wait) (struct task_struct * p);
- int (*task_prctl) (int option, unsigned long arg2,
- unsigned long arg3, unsigned long arg4,
- unsigned long arg5);
- void (*task_reparent_to_init) (struct task_struct * p);
- void (*task_to_inode)(struct task_struct *p, struct inode *inode);
- int (*ipc_permission) (struct kern_ipc_perm * ipcp, short flag);
- int (*msg_msg_alloc_security) (struct msg_msg * msg);
- void (*msg_msg_free_security) (struct msg_msg * msg);
- int (*msg_queue_alloc_security) (struct msg_queue * msq);
- void (*msg_queue_free_security) (struct msg_queue * msq);
- int (*msg_queue_associate) (struct msg_queue * msq, int msqf
- static int selinux_task_kill(struct task_struct *p, struct siginfo *info,
- int sig, u32 secid)
- {
- u32 perm;
- int rc;
- if (!sig)<span style="color: rgb(0, 130, 0); font-family: Consolas, 'Bitstream Vera Sans Mono', 'Courier New', Courier, monospace; font-size: 14px; line-height: 15.390625px; background-color: rgb(224, 224, 224);">//sig表示的是信号,首先确定是否定义了信号,然后调用signal_to_av对信号进行分类</span>
- perm = PROCESS__SIGNULL; /* null signal; existence test */
- else
- perm = signal_to_av(sig);//返回perm,perm是本函数对sig的许可,会在下面调用<span style="font-family: 微软雅黑;">avc_has_perm作为参数</span>
- if (secid)
- rc = avc_has_perm(secid, task_sid(p),
- SECCLASS_PROCESS, perm, NULL);
- else
- rc = current_has_perm(p, perm);
- return rc;//rc就是函数的返回值,0为可以执行,不能执行将会返回-EACCSE
- }
- static inline u32 signal_to_av(int sig)
- {
- u32 perm = 0;
- switch (sig) {//中间两个杀进程的信号做何种处理可以选择,
- //处理的类型返回到perm
- case SIGCHLD:
- /* Commonly granted from child to parent. */
- perm = PROCESS__SIGCHLD;
- break;
- case SIGKILL:
- /* Cannot be caught or ignored */
- perm = PROCESS__SIGKILL;
- break;
- case SIGSTOP:
- /* Cannot be caught or ignored */
- perm = PROCESS__SIGSTOP;
- break;
- default:
- /* All other signals. */
- perm = PROCESS__SIGNAL;
- break;
- }
- return perm;
- }
- u32 secid为进程的sid这是SELinux的有的super id,每一个sid对应了一条安全上下文(也就是user,role,type),如果没有那么将会调用<span style="font-family: 微软雅黑;">current_has_perm获得当前的sid,并调用avc_has_perm确定权限。</span>
- <pre name="code" class="cpp">/*
- * Check permission between current and another task, e.g. signal checks,
- * fork check, ptrace check, etc.
- * current is the actor and tsk2 is the target
- * - this uses current's subjective creds
- */
- static int current_has_perm(const struct task_struct *tsk,
- u32 perms)
- {
- u32 sid, tsid;
- sid = current_sid();
- tsid = task_sid(tsk);
- return avc_has_perm(sid, tsid, SECCLASS_PROCESS, perms, NULL);
- }
avc就是一个cache,存储着最近使用过的策略,这种cache思想到处都是比如MMU的内存映射。
SELinux/ss中的avc.c 中avc_has_perm 会调用avc_has_perm_noaudit查看是否在cache中。
- /**
- * avc_has_perm_noaudit - Check permissions but perform no auditing.
- * @ssid: source security identifier
- * @tsid: target security identifier
- * @tclass: target security class
- * @requested: requested permissions, interpreted based on @tclass
- * @flags: AVC_STRICT or 0
- * @avd: access vector decisions
- *
- * Check the AVC to determine whether the @requested permissions are granted
- * for the SID pair (@ssid, @tsid), interpreting the permissions
- * based on @tclass, and call the security server on a cache miss to obtain
- * a new decision and add it to the cache. Return a copy of the decisions
- * in @avd. Return %0 if all @requested permissions are granted,
- * -%EACCES if any permissions are denied, or another -errno upon
- * other errors. This function is typically called by avc_has_perm(),
- * but may also be called directly to separate permission checking from
- * auditing, e.g. in cases where a lock must be held for the check but
- * should be released for the auditing.
- */
- int avc_has_perm_noaudit(u32 ssid, u32 tsid,
- u16 tclass, u32 requested,
- unsigned flags,
- struct av_decision *avd)//avc_has_perm根据前三个参数得到avd,avd->allow
- //存储的就是许可的掩码,和request与得到答案
- {
- struct avc_node *node;
- int rc = 0;
- u32 denied;
- BUG_ON(!requested);
- rcu_read_lock();
- node = avc_lookup(ssid, tsid, tclass);
- if (unlikely(!node)) {//unlikely 不希望括号中的数值成立,在不成立的时候执行
- rcu_read_unlock();//这个就是cache中没有文件,需要读取ss文件的if条件语句
- security_compute_av(ssid, tsid, tclass, avd);
- rcu_read_lock();
- node = avc_insert(ssid, tsid, tclass, avd);
- } else {
- memcpy(avd, &node->ae.avd, sizeof(*avd));
- avd = &node->ae.avd;
- }
- denied = requested & ~(avd->allowed);
- if (denied) {//根据现有访问策略决定时候拒绝
- if (flags & AVC_STRICT)
- rc = -EACCES;
- else if (!selinux_enforcing || (avd->flags & AVD_FLAGS_PERMISSIVE))
- avc_update_node(AVC_CALLBACK_GRANT, requested, ssid,
- tsid, tclass, avd->seqno);
- else
- rc = -EACCES;
- }
- rcu_read_unlock();
- return rc;
- }
这个函数将会访问到SELinux中的策略,作出决定这次行动是否合法,
并且将策略装入cache以便下次使用。
- /**
- * security_compute_av - Compute access vector decisions.
- * @ssid: source security identifier
- * @tsid: target security identifier
- * @tclass: target security class
- * @avd: access vector decisions 访问向量策略-听起来吊炸天!!!
- *
- * Compute a set of access vector decisions based on the
- * SID pair (@ssid, @tsid) for the permissions in @tclass.
- */
- void security_compute_av(u32 ssid,
- u32 tsid,
- u16 orig_tclass,
- struct av_decision *avd)
- {
- u16 tclass;
- struct context *scontext = NULL, *tcontext = NULL;
- read_lock(&policy_rwlock);
- avd_init(avd);
- if (!ss_initialized)
- goto allow;
- scontext = sidtab_search(&sidtab, ssid);
- if (!scontext) {
- printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
- __func__, ssid);
- goto out;
- }
- /* permissive domain? */
- if (ebitmap_get_bit(&policydb.permissive_map, scontext->type))
- avd->flags |= AVD_FLAGS_PERMISSIVE;
- tcontext = sidtab_search(&sidtab, tsid);
- if (!tcontext) {
- printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
- __func__, tsid);
- goto out;
- }
- tclass = unmap_class(orig_tclass);
- if (unlikely(orig_tclass && !tclass)) {
- if (policydb.allow_unknown)
- goto allow;
- goto out;
- }
- context_struct_compute_av(scontext, tcontext, tclass, avd);
- map_decision(orig_tclass, avd, policydb.allow_unknown);
- out:
- read_unlock(&policy_rwlock);
- return;
- allow:
- avd->allowed = 0xffffffff;
- goto out;
- }
- void security_compute_av_user(u32 ssid,
- u32 tsid,
- u16 tclass,
- struct av_decision *avd)
- {
- struct context *scontext = NULL, *tcontext = NULL;
- read_lock(&policy_rwlock);
- avd_init(avd);
- if (!ss_initialized)
- goto allow;
- scontext = sidtab_search(&sidtab, ssid);
- if (!scontext) {
- printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
- __func__, ssid);
- goto out;
- }
- /* permissive domain? */
- if (ebitmap_get_bit(&policydb.permissive_map, scontext->type))
- avd->flags |= AVD_FLAGS_PERMISSIVE;
- tcontext = sidtab_search(&sidtab, tsid);
- if (!tcontext) {
- printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
- __func__, tsid);
- goto out;
- }
- if (unlikely(!tclass)) {
- if (policydb.allow_unknown)
- goto allow;
- goto out;
- }
- context_struct_compute_av(scontext, tcontext, tclass, avd);
- out:
- read_unlock(&policy_rwlock);
- return;
- allow:
- avd->allowed = 0xffffffff;
- goto out;
- }