Android Looper Hander和MessageQueue的关系

本文深入解析Android中使用Handler和Thread进行线程间通信的方法,包括Handler的构造、Looper的初始化及消息队列的运作流程。阐述了如何在不同线程中实例化Handler以及消息的发送、接收与处理过程,详细解读了Android源码中的关键实现细节。

       使用Handler和Thread是Android进行线程间通信的主要方式。具体方式是,在异步线程中,使用handler发送Message到指定队列(handler.sendMessage(Message msg))。目标队列接收消息后,将消息添加到队列中,Looper轮询队列,依次对异步线程发送过来的Message进行处理,下面结合Android源码详述。

       先看Handler的构造方法(android.os.Handler.java):

      

 public Handler() {
           //doSomething
          mLooper = Looper.myLooper();
          if (mLooper == null) {
            throw new RuntimeException( "Can't create handler inside thread that has not called Looper.prepare()");
          }
        mQueue = mLooper.mQueue;
        mCallback = null;
    }

    /**
     * Constructor associates this handler with the queue for the
     * current thread and takes a callback interface in which you can handle
     * messages.
     */
    public Handler(Callback callback) {
       //doSomething
        mLooper = Looper.myLooper();
        if (mLooper == null) {
            throw new RuntimeException(
                "Can't create handler inside thread that has not called Looper.prepare()");
        }
        mQueue = mLooper.mQueue;
        mCallback = callback;
    }

    /**
     * Use the provided queue instead of the default one.
     */
    public Handler(Looper looper) {
        mLooper = looper;
        mQueue = looper.mQueue;
        mCallback = null;
    }

    /**
     * Use the provided queue instead of the default one and take a callback
     * interface in which to handle messages.
     */
    public Handler(Looper looper, Callback callback) {
        mLooper = looper;
        mQueue = looper.mQueue;
        mCallback = callback;
    }

 每个handler必定有一个对应的Looper,如果没有在构造器中传入,则调用Looper.myLooper()生成一个默认的Looper,再去看Looper的代码(android.os.Looper.java):

 // sThreadLocal.get() will return null unless you've called prepare().
    static final ThreadLocal<Looper> sThreadLocal = new ThreadLocal<Looper>();

    /**
     * Return the Looper object associated with the current thread.  Returns
     * null if the calling thread is not associated with a Looper.
     */
    public static Looper myLooper() {
        return sThreadLocal.get();
    }

 sThreadLocal里什么时候装进去的Looper呢?在android.app.ActivityThread.java代码里发现了对Looper的static方法的调用:

 public static void main(String[] args) {
        SamplingProfilerIntegration.start();

        // CloseGuard defaults to true and can be quite spammy.  We
        // disable it here, but selectively enable it later (via
        // StrictMode) on debug builds, but using DropBox, not logs.
        CloseGuard.setEnabled(false);

        Process.setArgV0("<pre-initialized>");

        Looper.prepareMainLooper();
        if (sMainThreadHandler == null) {
            sMainThreadHandler = new Handler();
        }

        ActivityThread thread = new ActivityThread();
        thread.attach(false);

        if (false) {
            Looper.myLooper().setMessageLogging(new
                    LogPrinter(Log.DEBUG, "ActivityThread"));
        }

        Looper.loop();

        throw new RuntimeException("Main thread loop unexpectedly exited");
    }

 这个main方法在系统启动时已经被调用过,android.os.Looper.sThreadLocal是一个静态常量,所有Looper实例共用此常量。

   

     /** Initialize the current thread as a looper.
      * This gives you a chance to create handlers that then reference
      * this looper, before actually starting the loop. Be sure to call
      * {@link #loop()} after calling this method, and end it by calling
      * {@link #quit()}.
      */
    public static void prepare() {
        if (sThreadLocal.get() != null) {
            throw new RuntimeException("Only one Looper may be created per thread");
        }
        sThreadLocal.set(new Looper());
    }

    /**
     * Initialize the current thread as a looper, marking it as an
     * application's main looper. The main looper for your application
     * is created by the Android environment, so you should never need
     * to call this function yourself.  See also: {@link #prepare()}
     */
    public static void prepareMainLooper() {
        prepare();
        setMainLooper(myLooper());
        myLooper().mQueue.mQuitAllowed = false;
    }

    private synchronized static void setMainLooper(Looper looper) {
        mMainLooper = looper;
    }

    /** Returns the application's main looper, which lives in the main thread of the application.
     */
    public synchronized static Looper getMainLooper() {
        return mMainLooper;
    }

 prepareMainLooper()方法调用了prepare()方法,prepare()方法为android.os.Looper.sThreadLocal进行赋值,我们继续跟进Looper的构造器:

    private Looper() {
        mQueue = new MessageQueue();
        mRun = true;
        mThread = Thread.currentThread();
    }

 至此,Looper和当前线程对应起来,并且实例化MessageQueue对象。

         按以上,如果我们在主线程里不传Looper实例化了一个Handler,handler对应的Looper所对应的线程就是ActivitThread运行的线程,就是我们常说的主线程。

        如果我们在非主线程里实例化了一个Looper,方法必然是在当前线程调用Looper.prepare(); Looper.loop();。Handler对应的Looper对应当前线程。

        一个线程中可以创建多个Handler,但只能拥有一个Looper,一个Looper对应一个消息队列。

         注:对同一个ThreadLocal对象调用get方法,不同线程将得到不同结果,具体原理与介绍不在此描述。

 

 

 

      下面我们开始使用handler工作,发送消息时使用sendMessage方法或者Message的sendToTarget方法,最终都会调用到handler对应的Looper持有的MessageQueue,队列调用

final boolean enqueueMessage(Message msg, long when) {
        if (msg.isInUse()) {
            throw new AndroidRuntimeException(msg
                    + " This message is already in use.");
        }
        if (msg.target == null && !mQuitAllowed) {
            throw new RuntimeException("Main thread not allowed to quit");
        }
        final boolean needWake;
        synchronized (this) {
            if (mQuiting) {
                RuntimeException e = new RuntimeException(
                    msg.target + " sending message to a Handler on a dead thread");
                Log.w("MessageQueue", e.getMessage(), e);
                return false;
            } else if (msg.target == null) {
                mQuiting = true;
            }

            msg.when = when;
            //Log.d("MessageQueue", "Enqueing: " + msg);
            Message p = mMessages;
            if (p == null || when == 0 || when < p.when) {
                msg.next = p;
                mMessages = msg;
                needWake = mBlocked; // new head, might need to wake up
            } else {
                Message prev = null;
                while (p != null && p.when <= when) {
                    prev = p;
                    p = p.next;
                }
                msg.next = prev.next;
                prev.next = msg;
                needWake = false; // still waiting on head, no need to wake up
            }
        }
        if (needWake) {
            nativeWake(mPtr);
        }
        return true;
    }

 这个方法把发送的Message添加到队列中,而已经启动的Looper则一直在轮询运行

    /**
     * Run the message queue in this thread. Be sure to call
     * {@link #quit()} to end the loop.
     */
    public static void loop() {
        Looper me = myLooper();
        if (me == null) {
            throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");
        }
        MessageQueue queue = me.mQueue;
        
        // Make sure the identity of this thread is that of the local process,
        // and keep track of what that identity token actually is.
        Binder.clearCallingIdentity();
        final long ident = Binder.clearCallingIdentity();
        
        while (true) {
            Message msg = queue.next(); // might block
            if (msg != null) {
                if (msg.target == null) {
                    // No target is a magic identifier for the quit message.
                    return;
                }

                long wallStart = 0;
                long threadStart = 0;

                // This must be in a local variable, in case a UI event sets the logger
                Printer logging = me.mLogging;
                if (logging != null) {
                    logging.println(">>>>> Dispatching to " + msg.target + " " +
                            msg.callback + ": " + msg.what);
                    wallStart = SystemClock.currentTimeMicro();
                    threadStart = SystemClock.currentThreadTimeMicro();
                }

                msg.target.dispatchMessage(msg);

                if (logging != null) {
                    long wallTime = SystemClock.currentTimeMicro() - wallStart;
                    long threadTime = SystemClock.currentThreadTimeMicro() - threadStart;

                    logging.println("<<<<< Finished to " + msg.target + " " + msg.callback);
                    if (logging instanceof Profiler) {
                        ((Profiler) logging).profile(msg, wallStart, wallTime,
                                threadStart, threadTime);
                    }
                }

                // Make sure that during the course of dispatching the
                // identity of the thread wasn't corrupted.
                final long newIdent = Binder.clearCallingIdentity();
                if (ident != newIdent) {
                    Log.wtf(TAG, "Thread identity changed from 0x"
                            + Long.toHexString(ident) + " to 0x"
                            + Long.toHexString(newIdent) + " while dispatching to "
                            + msg.target.getClass().getName() + " "
                            + msg.callback + " what=" + msg.what);
                }
                
                msg.recycle();
            }
        }
    }

 方法中msg.target.dispatchMessage(msg);说明handlder的dispatchMessage()方法运行在loop()调用的线程中,dispatchMessage方法将调用handleMessage方法。

     这样,Handler处理消息的代码将运行在其对应的Looper所在的线程。整体的结构也就清晰了:

     Handler实例化时,引用一个Looper,Looper唯一对应一个线程,Looper持有一个消息队列,Handler发送消息到消息队列,Looper轮询获取消息队列中的待处理Message,Message对象的target在轮询中顺次分发给Handler,Handler的handleMessage方法被调用。

先展示下效果 https://pan.quark.cn/s/e81b877737c1 Node.js 是一种基于 Chrome V8 引擎的 JavaScript 执行环境,它使开发者能够在服务器端执行 JavaScript 编程,显著促进了全栈开发的应用普及。 在 Node.js 的开发流程中,`node_modules` 文件夹用于存储所有依赖的模块,随着项目的进展,该文件夹可能会变得异常庞大,其中包含了众多可能已不再需要的文件文件夹,这不仅会消耗大量的硬盘空间,还可能减慢项目的加载时间。 `ModClean 2.0` 正是为了应对这一挑战而设计的工具。 `ModClean` 是一款用于清理 `node_modules` 的软件,其核心功能是移除那些不再被使用的文件文件夹,从而确保项目的整洁性运行效率。 `ModClean 2.0` 是此工具的改进版本,在原有功能上增加了更多特性,从而提高了清理工作的效率精确度。 在 `ModClean 2.0` 中,用户可以设置清理规则,例如排除特定的模块或文件类型,以防止误删重要文件。 该工具通常会保留项目所依赖的核心模块,但会移除测试、文档、示例代码等非运行时必需的部分。 通过这种方式,`ModClean` 能够协助开发者优化项目结构,减少不必要的依赖,加快项目的构建速度。 使用 `ModClean` 的步骤大致如下:1. 需要先安装 `ModClean`,在项目的根目录中执行以下命令: ``` npm install modclean -g ```2. 创建配置文件 `.modcleanrc.json` 或 `.modcleanrc.js`,设定希望清理的规则。 比如,可能需要忽略 `LICENSE` 文件或整个 `docs`...
2026最新微信在线AI客服系统源码 微信客服AI系统是一款基于PHP开发的智能客服解决方案,完美集成企业微信客服,为企业提供7×24小时智能客服服务。系统支持文本对话、图片分析、视频分析等多种交互方式,并具备完善的对话管理、人工转接、咨询提醒等高级功能。 核心功能 ### 1.  智能AI客服 #### 自动回复 - **上下文理解**:系统自动保存用户对话历史,AI能够理解上下文,提供连贯的对话体验 - **个性化配置**:可自定义系统提示词、最大输出长度等AI参数 #### 产品知识库集成 - **公司信息**:支持配置公司简介、官网、竞争对手等信息 - **产品列表**:可添加多个产品,包括产品名称、配置、价格、适用人群、特点等 - **常见问题FAQ**:预设常见问题及答案,AI优先使用知识库内容回答 - **促销活动**:支持配置当前优惠活动,AI会自动向用户推荐 ### 2. 多媒体支持 #### 图片分析 - 支持用户发送图片,AI自动分析图片内容 - 可结合文字描述,提供更精准的分析结果 - 支持常见图片格式:JPG、PNG、GIF、WebP等 #### 视频分析 - 支持用户发送视频,AI自动分析视频内容 - 视频文件自动保存到服务器,提供公网访问 - 支持常见视频格式:MP4、等 ### 3.  人工客服转接 #### 关键词触发 - **自定义关键词**:可配置多个转人工触发关键词(如:人工、客服、转人工等) - **自动转接**:用户消息包含关键词时,自动转接给指定人工客服 - **友好提示**:转接前向用户发送提示消息,提升用户体验 #### 一键介入功能 - **后台管理**:管理员可在对话管理页面查看所有对话记录 - **快速转接**:点击"一键介入"按钮,立即将用户转接给人工客服
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值